
Contents lists available at ScienceDirect
Information Systems

Information Systems 42 (2014) 89–106
0306-43
http://d

n Corr
E-m

eunus@
sumann
journal homepage: www.elsevier.com/locate/infosys
Scalable visibility color map construction in spatial databases

Farhana Murtaza Choudhury a, Mohammed Eunus Ali a,n, Sarah Masud b,
Suman Nath c, Ishat E. Rabban a

a Department of CSE, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
b Department of Computer Science, University of Virginia, VA, United States
c Microsoft Research, Redmond, WA, United States
a r t i c l e i n f o

Article history:
Received 14 November 2013
Received in revised form
10 December 2013
Accepted 14 December 2013

Recommended by: D. Shasha

may be seen from many points but is readable only from a few points closer to it. In this
Available online 21 December 2013

Keywords:
Spatial databases
Query processing
Three-dimensional (3D) objects
Visibility color map
79/$ - see front matter & 2013 Elsevier Ltd.
x.doi.org/10.1016/j.is.2013.12.002

esponding author. Tel.: +88 029665612; fax
ail addresses: farhanamc@gmail.com (F.M. Ch
cse.buet.ac.bd (M.E. Ali), sp9cx@virginia.edu
@microsoft.com (S. Nath), ieranik@yahoo.co
a b s t r a c t

Recent advances in 3D modeling provide us with real 3D datasets to answer queries, such
as “What is the best position for a new billboard?” and “Which hotel room has the best view?”
in the presence of obstacles. These applications require measuring and differentiating the
visibility of an object (target) from different viewpoints in a dataspace, e.g., a billboard

paper, we formulate the above problem of quantifying the visibility of (from) a target
object from (of) the surrounding area with a visibility color map (VCM). A VCM is
essentially defined as a surface color map of the space, where each viewpoint of the
space is assigned a color value that denotes the visibility measure of the target from
that viewpoint. Measuring the visibility of a target even from a single viewpoint is an
expensive operation, as we need to consider factors such as distance, angle, and obstacles
between the viewpoint and the target. Hence, a straightforward approach to construct the
VCM that requires visibility computation for every viewpoint of the surrounding space of
the target is prohibitively expensive in terms of both I/Os and computation, especially for
a real dataset comprising thousands of obstacles. We propose an efficient approach to
compute the VCM based on a key property of the human vision that eliminates the
necessity for computing the visibility for a large number of viewpoints of the space.
To further reduce the computational overhead, we propose two approximations; namely,
minimum bounding rectangle and tangential approaches with guaranteed error bounds.
Our extensive experiments demonstrate the effectiveness and efficiency of our solutions
to construct the VCM for real 2D and 3D datasets.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recent advances in large-scale 3D modeling have
enabled capturing urban environments into 3D models.
These 3D models give photo-realistic resemblance of
urban objects such as buildings, trees, and terrains and
are widely used by popular 3D mapping services, e.g.,
All rights reserved.

: +88 029665612.
oudhury),
(S. Masud),
m (I.E. Rabban).
Google Maps, Google Earth, and Bing Maps. The increasing
availability of these realistic 3D datasets provides us an
opportunity to answer many real-life queries involving
visibility in the presence of 3D obstacles. For example, an
advertising company may wish to determine the visibility
of their existing billboards from the surrounding areas in
order to find a suitable location to place a new billboard;
the police may check the visibility of a surveillance camera
to find how well it covers its surrounding areas; and an
apartment buyer may want to check the visibility of the
nearby sea-beach and mountains from various available
apartments.

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2013.12.002
http://dx.doi.org/10.1016/j.is.2013.12.002
http://dx.doi.org/10.1016/j.is.2013.12.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.12.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.12.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.12.002&domain=pdf
mailto:farhanamc@gmail.com
mailto:eunus@cse.buet.ac.bd
mailto:sp9cx@virginia.edu
mailto:sumann@microsoft.com
mailto:ieranik@yahoo.com
http://dx.doi.org/10.1016/j.is.2013.12.002


F.M. Choudhury et al. / Information Systems 42 (2014) 89–10690
In this paper, we investigate efficient techniques to
answer the underlying query required by the above
applications: computing visibility of an object (e.g., bill-
board) from the surrounding continuous space, or that of
the surrounding space from a source viewpoint (e.g.,
camera). Our target applications treat visibility as a con-
tinuous notion—e.g., a billboard may be more visible from
one location than another, depending on factors such as
distance, viewing angle, and obstacles between the view-
point and the target. Such quantification of visibility
is important, because a billboard can be visible from a
number of places, but may not be readable from all of
them. We therefore use a visibility function that provides
real-valued visibility measures of various points in the
(discretized) 3D space, where the visibility measure of a
point denotes its visibility from the viewpoint or to the
target object. Thus, the answer to our target query is
essentially the visibility measures for every point in the
3D space. The result can be graphically represented as a
heat map, by assigning colors to various points according
to their visibility measures. We call this a visibility color
map (VCM) of the space for a given target or for a given
viewpoint.

Recent works have shown how database techniques
can enable efficiently answering various types of visibility
queries in the presence of obstacles. Various nearest
neighbor (NN) queries consider visibility of objects [1–3];
for example, the visible nearest neighbor query [1] finds
the nearest neighbors that are visible from the source.
However, these works, like various other computer gra-
phics works [4–9], treat visibility as a binary notion:
a point is either visible or not from another point. In
contrast, in our target applications, visibility is a contin-
uous notion. Recently, Masud et al. proposed techniques
for computing continuous visibility measure of a target
object from a particular point in 3D space (e.g., computing
visibility of a billboard from a given location) [10]. On the
contrary, our target applications require visibility calcula-
tion from or of a continuous space, not from a user
specified location.

One straightforward way to generate a VCM is to
discretize the 3D space and to use the techniques in [10]
to compute visibility measure for each discrete point in the
space. However, this can be prohibitively expensive. For
example, discretizing the surrounding space into 1000
points in each dimension would give a total of 109 points
in the 3D space; and computing visibility measure for each
point by using techniques in [10] would take 128 days!
The huge cost comes from two sources: (i) computing the
visibility measure based on the distance and angle from all
viewpoints, which is computationally expensive and (ii)
accessing a large set of obstacles from the database, which
is I/O expensive.

We address the above challenges with a three-step
solution that uses several novel optimizations to reduce
computational and I/O overhead. First, we partition the
dataspace into a set of equi-visible cells, i.e., all points
inside a cell have equal visibility of the target object in
terms of visual appearance. We exploit the key observation
that when a lens (e.g., a human eye) sees an object without
any obstacles, it cannot differentiate between its visual
appearances from a spatially close set of points within an
angular resolution (or spatial resolution) of � 4 arcmin
(� 0:071) [11]. Thus, we can safely prune the visibility
computation for a large number of viewpoints within the
angular or spatial resolution without affecting viewer0s
perception. This optimization significantly reduces the
computation cost, as we can compute only one visibility
measure for each cell.

In the next step, we consider the effect of obstacles.
We compute visible regions, the regions in the space from
where the target object is completely visible in the pre-
sence of obstacles. In the final step, we assign visibility
measures to these regions from the corresponding cells
by spatial joins. Both steps are I/O and computation
intensive. For example, they both require retrieving a large
number of cells and obstacles from the spatial database.
To reduce I/O costs, we employ various indexing techni-
ques to incrementally retrieve a small number of obstacles
and cells near the target object. These steps also require
performing many computationally expensive operations
such as polygon intersections of irregular-shaped regions
and cells. To reduce such costs, we represent regions with
regular shaped polygons in a quad-tree. We also propose
two approximations that further reduce the cost while
providing guaranteed small error bounds.

We have evaluated the performance of our solution
with real 3D maps of two big cities. We compare our
solution with a baseline approach that divides the space
into a regular shape grid of 500 cells in each dimension
and computes visibility from each grid cell. The baseline
approach results into more than 30% error while requiring
about 800 times more computation time and six orders of
magnitude more I/O than our solution. Hence, in the
baseline approach, dividing the space into more cells for
more accuracy is not feasible for practical applications.
On the other hand, our approach provides efficient and
effective solution.

In summary, we make the following contributions:
�
 We formulate the problem of efficiently constructing a
visibility color map (VCM) in the presence of obstacles
in 2D and 3D spaces.
�
 We propose an efficient solution to construct a VCM.
The solution uses various novel optimizations to sig-
nificantly reduce the computational and I/O overhead
compared to a baseline solution.
�
 We propose two approximations with guaranteed
error bounds and reduced computation to construct
the VCM.
�
 We conduct extensive experiments in two real datasets to
show the effectiveness and efficiency of our approaches.

2. Problem formulation and preliminaries

2.1. Problem formulation

The construction of a visibility color map (VCM) can
be seen from two perspectives: target-centric VCM and
viewer-centric VCM. The construction of a target-centric



Fig. 1. Effect of distance and angle on visibility.

F.M. Choudhury et al. / Information Systems 42 (2014) 89–106 91
VCM involves determining how much a given target is
visible from every point1 of the space. On the other hand, a
viewer-centric VCM involves determining howmuch visible
each point in the surrounding space is from a given
viewer0s location.

In both cases, we need to compute visibility and produce
a color map of the space where each point of the space is
assigned a color value that corresponds to the visibility
measure of that point.

Definition 2.1 (Visibility color map (VCM)). Given a
d-dimensional dataspace Rd and a set O of obstacles, the
VCM is a color map C, where for each point xARd, there
exists a color cxA ½0;1�. The color cx corresponds to the
visibility of a given target object T from X in the case of
target-centric VCM and the visibility of X from a given
viewer0s location q in the case of viewer-centric VCM. Here,
cx is normalized between 0 and 1.

Without loss of generality, we limit our discussion
to the construction of target-centric VCM in the subse-
quent sections. However, our solution is also applicable
to the viewer-centric VCM construction, as explained in
Section 4.2.

The core of computing a VCM is computing visibility of
the target from various points in the space. The most
common measure of visibility (or, the perceived size) of an
object is the visual angle [12], which is the angle imposed
by the viewed object on a lens. The visual angle mainly
depends on the characteristics of the viewing lens as well
as the distance, angle, and obstacles between the viewer
and the target [13].

2.2. Factors affecting visibility

2.2.1. Relative position of the lens and the target
The perceived visibility of a target object mainly

depends on the relative position the viewing lens and
the target. For a specific target, the visibility varies with
the change of distance and angle between the lens and the
target.

Distance: If the distance between a target T and a lens
increases, the perceived size of T becomes smaller. This is
because the visual angle imposed by an object decreases
with the increase of the distance between that object and
the viewer. As shown in Fig. 1, AB is a target object of
length S and the position of a lens is O. When the midpoint
of AB is at an orthogonal distance D from O, the visual
angle V is calculated using the following formula [14]:

V ¼ 2 arctan
S
2D

� �
ð1Þ

Angle: The perceived size of a target T depends on the
angle α between the lens and T [15]. If an object is viewed
from an oblique angle, the perceived size of that object
becomes smaller than the original size. For the equidistant
positions of the lens from T, the visual angle V varies for
different values of α. Let AB be a line of length S. A line qm
connecting a point q and the midpoint m of AB creates an
1 We have used point and viewpoint interchangeably.
angle α with AB. If α¼ 901, the perceived size of AB from a
nominal distance is the same as the original length,
S. Otherwise, according to the concept of oblique projec-
tion [15], the perceived length Sα of AB from q is

Sα ¼ α

901
� S ð2Þ

Thus, if we consider the effects of both distance and
angle between the target and the lens, the visual angle V
can be expressed as V ¼ 2 arctanðSα=2DÞ. In Fig. 1, the
visibility of the target AB of length S is the visual angle V
imposed at the lens O. As in this case α¼ 901, so the visual
angle V is 2 arctanð300 m=ð2� 400 mÞÞ ¼ 41:111. If α¼ 451,
then V is 2 arctanð150 m=ð2� 400 mÞÞ ¼ 21:231.

Besides the relative position of the lens, the visibility of
a target is also affected by the presence of obstacles.

2.2.2. Obstacles
To show the effect of obstacles on the visibility, we first

define the term point to point visibility.

Definition 2.2 (Point to point visibility). Given two points
p; p0 and a set O of obstacles in a space, p and p0 are visible
to each other if and only if the straight line connecting
them, pp0 , does not cut through any obstacle, i.e., 8oAO;
pp0 \ o¼⊘.

Based on the definition of point to point visibility, we
formally define the obstructed region as

Definition 2.3 (Obstructed region). Given a set O of obsta-
cles, a bounded region R, and a target T, the obstructed
region is the set of points where for each point p, (i) p is in
R and (ii) p is not point to point visible to all points of T.

The obstructed region contains viewpoints from where
the target object is not completely visible. Thus, we
only need to measure the visibility for the viewpoints
residing outside the obstructed region that form the
visible region, and assign colors to these viewpoints
of the visible region according to the defined visibility
measure (i.e., visual angle).

3. Constructing a VCM

To construct a VCM for a given target T, we need
to determine the visibility of T from all discrete points in
the surrounding space R in the presence of a set O of
obstacles. We represent visibility of each point xAR
with a color cx, which is proportional to the visibility



Table 1
Notations used and their meanings.

Notation Meaning

T The target object
O A set of b obstacles O¼ fo1 ; o2;…; obg
V The visual angle imposed in a lens by T
μ The angular resolution of a lens
α The angle between T and the line connecting

the lens and the midpoint of T

F.M. Choudhury et al. / Information Systems 42 (2014) 89–10692
of T from X. We use the terms visibility measure and color
interchangeably.

One naïve approach to compute a VCM is to compute
visibility of T from every single viewpoint xAR. Depend-
ing on how finely we discretize the space R, there can be a
large number of points, making the process prohibitively
expensive. The high overhead of this naïve approach
comes due to the expensive visibility computation from
a large number of points and expensive I/O operations
to retrieve a large collection of obstacles from a spatial
database.

To address these problems, we propose an efficient
solution to construct a VCM. The key insights of our
solution come from the following two observations. First,
human eye cannot visually differentiate a target from
viewpoints in close proximity of each other, which
eliminates the necessity of computing visibility for all
viewpoints in the surrounding space. Second, in most
cases, only a small subset of obstacles affect visibility of
the target, and thus retrieval of all obstacles is redundant.
Such redundancy can be avoided by using various indexing
techniques.

In the rest of the section, we describe how we exploit
these observations and propose an efficient approach to
compute a VCM with reduced computational and I/O
overhead. Our approach consists of three steps:
1.
 First, we partition the space into several equi-visible
cells in the absence of obstacles exploiting the limita-
tions of human vision. This enables us to compute
one single visibility measure for each cell. This signifi-
cantly reduces computational overhead in contrast
to computing the color of each discrete viewpoint
(Section 3.1).
2.
 Second, we compute the effect of obstacles and divide
the surrounding space into a set of visible regions such
that the target is completely visible from a viewpoint if
and only if it is within a visible region. To reduce the I/O
overhead, we index all obstacles and incrementally
retrieve only the potential obstacles that can affect
the visibility of the target (Section 3.2).
3.
 Finally, we join colors computed in the first step (that
ignores obstacles) and visible regions computed in the
second step to compute a VCM, i.e., colors of different
parts of the space in the presence of obstacles. To
reduce I/O overhead of retrieving results from the first
two steps, we employ various indices (Section 3.3).

For ease of explanation, we assume a 2D space and a
target with the shape of line in the subsequent sections.
However, our approach is applicable to any target shapes in
2D and 3D spaces. Table 1 lists the notations that we use.
3.1. Partitioning space into equi-visible cells

As mentioned before, the ability of a human eye (or a
lens) to distinguish the variation of small details of a target
T of size S is limited by its angular resolution μ. To exploit
this observation, we partition the space into a set ζ of n
equi-visible cells {ζ1; ζ2;…; ζn}. Each cell ζi is constructed in
a way so that the deviation in visibility of T from the
viewpoints inside a cell, measured as visual angle V, is not
visually perceivable. Hence for any two points p; p0Aζi,
visibility from p and p0 is perceived as the same if

jVp�Vp0 jp;p0 A ζi rμ ð3Þ
Note that visibility is a symmetric measure: visibility

of a target at location p from a viewer (i.e., the lens)
at location q is the same as that of a target at q from
location p. Thus, visibility of a target T from the surround-
ing space is the same as visibility of the space from T0s
location. Therefore, in computing visibility of T from the
space, we consider the viewer at the target0s location and
compute visibility of the space from that location.

Since the value of visual angle depends on the distance
and angle between the lens and the target, the partitioning
is done in two steps: distance based partition and angle
based partition.

3.1.1. Distance based partition
As the perceived size of T varies with the change of

distance between T and the viewer0s location, our aim is to
find a set D of m distances, D¼ fd0; d1;…; dm�1g, where for
each pair of points p; p0 between di and diþ1, 0r iom�2,
the variation of the perceived visibility from p and p0 is less
than or equal to the angular resolution μ. Note that, since
the visibility varies as α deviates from 901 (as explained in
Section 2.2.1), we set α¼ 901 as the default value for the
distance based partitioning.

Partitioning starts from the near point distance d0, as a
lens cannot focus on any object that is nearer than d0 [16].
Initially, the visual angle V0 from the distance d0 is
calculated using Eq. (1). Then, starting from V0, the value
of the visual angle is decreased by the amount of μ at each
step and the corresponding di is calculated. When the
imposed visual angle from a distance dm�1 is less than μ,
the distance based partitioning process terminates as for
any point farther than dm�1 (i.e., dmax), the perceived
visibility is indistinguishable to the viewing lens. So, we
have a set fd0; d1;…; dm�1g of distances where every range
〈di;diþ1〉 is a distance based partition. Fig. 2(a) shows
the distance based partitions for a target T, where d0 is
the near point distance and the distance based partitions
are 〈d0; d1〉, 〈d1;d2〉, and so on.

At this stage, we assign a single color for every distance
based partition 〈di; diþ1〉. However, every point in a dis-
tance based partition does not perceive the same visibility
of the target, e.g., in Fig. 2(a), two viewpoints q1 and q2
at a same distance partition may have different perceived
visibility due to different viewing angles. Thus, in the next



Fig. 2. Partitioning space into equi-visible cells. (a) Partitioning for distance. (b) Partitioning based on distance and angle.

F.M. Choudhury et al. / Information Systems 42 (2014) 89–106 93
section we incorporate the effect of viewing angle and
partition the space into equi-visible cells.
Algorithm 1. Partitioning (T ; μ;Ne).

Input: Target T, angular resolution μ, near point distance Ne.

Output: ζ¼ fζ1 ; ζ2 ; :::; ζng, where ζi is a cell resulting from
distance and angle based partitioning.
1.1
 Initialize L to an empty list;

1.2
 Initialize ζ to an empty list;

1.3
 S0’lengthof ðTÞ; i’0;

1.4
 α0’901; d0’Ne;

1.5
 V’ 2 arctan S0

2�d0
;

1.6
 While VZμ do6

1:7
1:8
1:9
diþ1’S0=ð2 tan ðV=2ÞÞ;
L’insertðdi ;diþ1Þ;
V’V�μ; di’diþ1; i’iþ1;

6664

1.10
 for each element 〈di ;diþ1〉 of L do6

1:11
1:12
1:13
1:14
1:15
1:16
1:17
1:18
1:19
1:20
d0i’averageðdi; diþ1Þ;
V0’2 arctan S

2�d0i
;

γi;0’901; j’1;
V’V0�μ;

while VZμ do
S’2� d0i � tan ðV=2Þ;
α’ðS� 901Þ=S0;
γi;j’γi;j�1�α;

ζ’insertððdi ; diþ1 ; γi;j�1; γi;jÞÞ;
V’V�μ; j’jþ1;

6666666664

66666666666666666666664

1.21
 return ζ;
3.1.2. Angle based partition

For each distance based partition 〈di; diþ1〉, 0r io
m�2, we get li numbers of angle based partitions
〈γi;j; γi;jþ1〉, 0r jo li�2, where the value of li is different
for each distance based partition. The visibility of every
point of a partition 〈di; diþ1; γi;j; γi;jþ1〉 is considered as the
same. We call such a partition an equi-visible cell (or, just
cell in short).

As the change in perceived length due to change in α is
symmetric with respect to both the parallel and normal
axes of the object plane, we compute the angle based
partitions only for the first quadrant. The partitions in
other quadrants are then obtained by reflecting the parti-
tions of the first quadrant. The procedure of angle based
partitioning is as follows:
(i)
 For each distance based partition 〈di;diþ1〉, the angle
based partitioning starts by initializing α0 ¼ 901,
γi;0 ¼ 901, and S0 ¼ S, where the size of T is S. The
visual angle V0 is calculated for α0 using Eq. (1) where
D¼ d0i. Here d0i is the average value of distances di and
diþ1, i.e., d

0
i ¼ ðdiþdiþ1Þ=2.
(ii)
 At each step j of the angle based partitioning for
〈di; diþ1〉, the perceived size Sj is calculated for visual
angle Vj ¼ Vj�1�μ and distance d0i using Eq. (1),
where jZ1, e.g., S1 ¼ 2D� tan ðV1=2Þ, for j¼1. The
angle αj, for which Sj is perceived, is computed using
Eq. (2), e.g., α1 ¼ ðS1 � 901Þ=S0, for j¼1. The visual
angle Vj is obtained for the change in γi;j�1 by the
amount ofαj, so γi;j is updated as γi;j�1�αj. Thus we get
an angle based partition 〈γi;j�1; γi;j〉 for 〈di; diþ1〉 at
each step.
(iii)
 When the perceived visual angle Vjoμ, the angle
based partitioning process for a distance based parti-
tion terminates.
The above process is repeated for each distance based
partition and finally we get the set ζ¼ fζ1; ζ2;…; ζng of n
cells where n¼m� li, 0r iom�1. Fig. 2(b) shows the
angle-based partitions for three distance-based partitions
〈d0; d1〉, 〈d1; d2〉, and 〈d2; d3〉 for a target object T.

The steps of the distance based and angle based
partitioning are shown in Algorithm 1. Lines 1.6–1.9 in
Algorithm 1 show the distance based partitioning steps.
Each partition from the distance based partitioning is
further partitioned for angles. Lines 1.10–1.20 show the
angle based partitioning steps.

After both partitioning steps are done, we compute
visibility (i.e., color) of each cell. Since all viewpoints
within a cell have the same visibility, we assign the color
of the entire cell as the visibility of the center of the cell to
the target T.

Note that we have not considered the effect of obstacles
yet. A caveat of this is that in the presence of obstacles, the
target T may not be visible from an entire cell or parts of a
cell even if the cell is assigned a good visibility value. We
address this next by considering the effect of obstacles.

3.2. Computing the effects of obstacles

Given a target object T and a set O of obstacles, we
would like to determine the set S of visible regions
surrounding T such that T is completely visible from a
viewpoint q if and only if q is inside a visible region.

A naïve approach to determine the effects of obstacles
is to retrieve all obstacles of O and calculate the corre-
sponding changes in the visibility. But this approach is
prohibitively costly in terms of both I/O and computation,
especially in the presence of a large number of obstacles.



Fig. 3. Visible region construction.

F.M. Choudhury et al. / Information Systems 42 (2014) 89–10694
Moreover, considering all obstacles in the database is
wasteful as only a relatively small number of obstacles
around T affect visibility. To efficiently retrieve this small
number of obstacles around T, we index all obstacles in an
Rn-tree [17], a variation of R-tree [18]. An Rn-tree consists
of a hierarchy of Minimum Bounding Rectangles (MBRs),
where each MBR corresponds to a tree node and bounds
all the MBRs in its sub-tree. Data objects (obstacles, in our
case) are stored in leaf nodes.

A recent work [10] has developed a technique to
determine the obstacles that affect the visibility of the
target from a specific viewpoint. On the contrary, we need
to compute the visible region of the whole space instead of
a specific viewpoint with respect to a target. Thus, we
cannot adopt the computation of the visible region from
[10]. Our approach to compute the visible region in the
presence of large number of obstacles is as follows.

Initially the set VR of visible regions contains the region
of R that is covered only by the field of view (FOV) with
respect to the target T. As shown in Fig. 3(a), VR is the
region bounded by the points TA, TB, A, and B where TA and
TB are the corner points of T. Here, FOV¼1201, the usual
FOV of the human eye [19]. Initially, the set OR of
obstructed regions is the region of R that is outside the
FOV. As T cannot be viewed from the region outside the
FOV, the obstacles residing in this region is discarded from
consideration.

Next, we refine the set VR and the set OR by considering
one obstacle at a time. The obstacle retrieval starts from
the root node of the R*-tree. Only the nodes that intersect
with a region in VR are incrementally retrieved from the
R*-tree according to their non-decreasing distances from
the target T. If the retrieved node is an MBR, its elements
are further discovered from the R*-tree. For example, in
Fig. 3(a), when the MBR R1 is accessed, its elements
o1; o2; o3, and o4 are further discovered. If the retrieved
node is an obstacle o, the regions in VR and OR are updated
according to the effect of o. We term the effect of a single
obstacle o on visibility as the shadow of o, Wo.
Definition 3.1. Shadow of an obstacle o, Wo. Wo is the
region formed by the set of points P, where for any point p
of P, there is at least a point tp on T such that the line
segment joining tp and p either intersects or touches o.

From each point p of the Wo, T is either completely or
partially obstructed. The boundary of a shadow Wo con-
tains exactly two straight lines, which are tangents
between the obstacle and the target. If these lines are
rays, not the line segments that meet each other, then the
region Wo is unbounded. If Wo is unbounded, we consider
only the portion that is bounded by the given region R.
In Fig. 3(a), the shadow of o1 is Wo1 (shown with black
shade), the region bounded by o1 and the points A;C;
and D.

While updating the VR and OR for the shadow of a
retrieved obstacle, there are three cases to be considered:
(i)
 If the obstacle o or its shadow Wo does not overlap
with any obstructed region of OR, we exclude Wo from
VR and include it in OR. In Fig. 3(a), obstacle o1 is
the first obstacle retrieved according to its non-
decreasing distance from T. As there is no other
obstructed region to be overlapped with o1 or its
shadow Wo1 (shown as the black region), Wo1 is now
excluded from VR and included in OR.
(ii)
 If o or Wo overlaps with one or more obstructed
regions of OR, we combine these regions and Wo into
a single obstructed region and discard this region
from VR. Let N be the set of Wo and the obstructed
regions that overlap with Wo. To combine the regions
in N, we determine the leftmost tangent line l and the
rightmost tangent line r of all the shadows of N such
that the region bounded by l, r and the union of the
shadows of N enclose all the obstructed regions of N.
This shadow resembles the combined effect of the
obstacles that are included in N. We replace the
regions of N from OR with this combined region and
discard it from VR. As an example, in Fig. 3(a), the
shadow Wo2 (shown with dotted lines) of the next
retrieved obstacle o2 overlaps with the existing
obstructed region (shown with black shade). Here,
the leftmost tangent line and the rightmost tangent
line of these obstructed regions are the line connect-
ing o1, C and the line connecting o2, E, respectively.



F.M. Choudhury et al. / Information Systems 42 (2014) 89–106 95
The region enclosed by these two lines and the union
of the shadows is discarded from VR. Similarly, the
next retrieved obstacle o3 overlaps with OR. The
shadows combined for obstacle o1, o2, and o3 are
shown in black shade in Fig. 3(b), where the shadow
of o3 is shown with dotted lines.
(iii)
 If o is entirely inside any obstructed region, it will not
contribute to the visibility. So we discard o from
consideration. In Fig. 3(b), the effect of obstacle o4 is
not calculated as it is entirely inside the current
obstructed region.
Note that, the visible region includes viewpoints from
where the target is entirely visible. This approach is
suitable for applications like placement of billboards,
where partial visibility of the target from a viewpoint does
not make sense. There can be some applications that
require finding the viewpoints from where a target is
partially visible. We leave computing the partial visible
viewpoints as the scope of the future study.

3.3. Merging cells with visible regions

In the final step of producing a VCM, we combine colors
computed in the first step (that ignores obstacles) and
visible regions computed in the second step to compute
color of each cell in the presence of obstacles. Intuitively,
all obstructed regions are assigned color zero (represent-
ing zero visibility), while all visible regions are assigned
colors from their corresponding cells. This requires taking
intersection (spatial join) of all cells and visible regions.

The above process can be expensive for two reasons.
First, visible regions are usually irregular polygons and
intersecting them with cells incurs high computational
overhead due to the complex shapes of the polygons. We
address this by storing each polygon as a set of regular
shapes (rectangles) with a quad-tree [20]. Second, the
number of cells can be quite large and intersecting visible
regions with all cells can be expensive. We address this by
indexing the cells in an R*-tree and intersecting each
visible region only with its overlapping cells. We describe
these optimizations below.
Fig. 4. Construction of
3.3.1. Indexing visible regions
We index visible (and obstructed) regions in a 2D (3D)

space with a quad-tree (octree). Quad-trees (Octrees)
partition a 2D (3D) space by recursively subdividing it
into four quadrants (eight octants) or blocks. Initially the
whole space is represented with a single quad-tree block.
In the visible region computation phase, when a region is
obstructed due to a retrieved obstacle, a quad-tree block is
partitioned into four equal blocks if it intersects with the
obstructed region. The partitioning continues until (i) a
quad-tree block is completely visible, or (ii) completely
obstructed, or (iii) the size of a block is below a threshold
value ϑ. The threshold size is determined in the partition-
ing phase. If the set of the boundary points of an equiva-
lence cell ζi is βζi , the minimum distance between any two
opposite boundaries over all cells is specified as ϑ, i.e.,

ϑ¼ arg min
ζi ;1r irn

arg min
p;p0 Aβζi

ðmindistðp; p0Þ
 !

where points p; p0Aβζi are points of opposite boundaries.
As ϑ is the minimum size of a cell obtained in the

partitioning phase and the deviation in the perceived
visibility for a block-size less than ϑ is not distinguishable
due to angular resolution of a lens, dividing a quad-
tree block into size smaller than ϑ for more accuracy is
redundant.

Fig. 4(a) shows the quad-tree of the obstructed region
(black blocks) and visible region (white blocks inside FOV).
After the quad-tree is constructed, we start assigning color
to each of its blocks. We get the VCM after all the blocks
are assigned colors. The blocks that fall in the obstructed
region are assigned zero visibility. The remaining blocks (i.e.,
visible region) are assigned colors based on the colors of
their corresponding cells, as described next.

3.3.2. Indexing cells and constructing VCM
For each quad-tree block with unassigned color, we

need to find all overlapping cells in order to find its color.
To expedite this process, we index cells with an R*-tree
that we call the color-tree. Leaf nodes in the color-tree
represent cells and non-leaf nodes represent MBRs con-
taining the shapes of their children nodes. Then, for each
visibility color map.



F.M. Choudhury et al. / Information Systems 42 (2014) 89–10696
quad-tree block, we run a range query on the color-tree.
The color for an unassigned quad-tree block is obtained by
calculating the intersection of the spatial region of that
block and the cells from the color-tree. If the quad-tree
block intersects with a single cell of the color partition, the
block is assigned the color of that cell. If a quad-tree block
intersects with multiple cells, in a 2D (3D) space we
further divide that block into four (eight) equal blocks.
The division is continued until either a block intersects
with a single cell or the size of a block is below the
threshold value ϑ (Section 3.3.1). The process terminates
when all quad-tree blocks of the visible region are colored
according to the visibility measure. Fig. 4(b) shows
the resulting VCM constructed by combining the color
partitions of Fig. 2(b) and the quad-tree of Fig. 4(a).

The steps of constructing a VCM are shown in
Algorithm 2. Lines 2.5–2.8 show accessing the color-tree
nodes. If an accessed node is an MBR, its elements are
further discovered from the color-tree (lines 2.20 –2.21). If
the accessed node is a leaf node, the quad-tree nodes that
are not colored yet and intersect with this node are either
colored or partitioned further (lines 2.14–2.19). Finally, the
colored quad-tree is returned as the complete VCM.

Algorithm 2. ConstructVCM(T ; FOV ; ϑ;Qtree;CTree).

2.1
 Initialize Q to an empty queue;

2.2
 Initialize L to an empty list;

2.3
 node’CTree:root; end’ false;

2.4
 L’Get_unassigned_quad_leaf ðQtree; FOVÞ;

2.5
 while nodea empty and end¼false do

2:6
2:7
2:8
2:9
2:10
2:11
2:12
2:13
2:14
2:15
2:16
2:17
2:18
2:19
2:20
2:21
for each element ne of node do
if Inside_visibility_regionðneÞ ¼ true then
jEnqueueðQ ;neÞ;

$

continue’true;

while continue¼ true do
continue ’false; node’DequeueðQ Þ;
if node¼ empty or L¼ empty then
jend’true;

else if node is a data object then
Initialize Still_unassigned_quads to an empty list;
for each element Li of L do
⌊Still_unassigned_quads’insertðDivide_and_colorðLi ;node; ϑÞÞ;
L’Still_unassigned_quads;
continue’true;

������������
else
⌊node’childðnodeÞ;

6666666666666666666666664

66666666666666666666666666666666666664

2.22
 return Qtree;
Algorithm 3. Divide_for_color (Qblock;Cnode;ϑ).

3.1
 Initialize L to an empty list;

3.2
 if intersects (Qblock,Cnode)¼true then�

3:3
3:4
3:5
3:6
3:7
3:8
if Totally_insideðQblock;CnodeÞ ¼ true or sizeðCnodeÞoϑthen
jcolorðQblockÞ’colorðCnodeÞ;
else
DivideðQblockÞ;
for each children qc of Qblock do
⌊Divide_for_colorðqc ;node; ϑÞ;

66664

��������������

3.9
 else

3.10
 ⌊ L ’Qblock;

3.11
 return L;
Since the color partitioning process results in complex
shaped cells (e.g., curves), it is computationally expensive
to combine these shapes with the quad-tree blocks of
the visible region. Thus, we propose two approaches to
approximate color partition cells.
4. Extensions

In this section, we discuss a few extensions to our basic
algorithm described in the previous section.

4.1. Approximation of partitions

The algorithm in the previous section partitions the space
according to the relative distance and angle between the lens
and the target. Based on these parameters, the cells are
bounded by arcs and straight lines. To construct the VCM, we
need to compute the intersection of these cells with the
quad-tree blocks. The process is computationally expensive
due to the complex shape of the cells and the target.

To address this, we introduce two approximations that
reduce the computational overhead at the cost of small
bounded errors: (i) minimum bounding rectangle (MBR) of
a cell and (ii) tangents of the arcs of a cell. For the ease
of explanation we analyze errors for targets with regular
shapes, e.g., lines without loss of generality. For such
targets, the complex shaped partitions are bounded by
two arcs and two straight lines. Here we discuss the
approximations of color partitions and the maximum error
resulting from these approximations.
4.1.1. MBR approximation
An approach to approximate the curves of a cell is to

enclose the cell using its MBR where the area covered by
the cell is approximated by the area covered by the
enclosing MBR. This is illustrated in Fig. 5(a), where a cell
consists of two concentric arcs ci and ciþ1 (centered at a
corner O of the target) of radius ri and riþ1, respectively.
ABCD is the MBR of this cell. Let θi and θiþ1 be the angles
(in degree) created by ci and ciþ1 at the center respectively.
We denote the area of the MBR as Ar. So the area bounded
by the cell, Ap is ðθiþ1=360� πr2iþ1Þ�ðθi=360� πr2i Þ. Hence
the area that gets wrong color due to this MBR approx-
imation is Ar�Ap (shaded region in Fig. 5(a)).

Error bound analysis: For targets with regular shapes
such as lines (Fig. 2(b)), the largest cell that can yield
the maximum possible error consists of two half circles
centered at a corner point of the target. Hence we
formulate the maximum error bound by referring to
Fig. 5(b). Here, we want to approximate the area of a cell
pi bounded by two half circles ci and ciþ1 centered at O, a
corner point of target T of length S. Here, ci and ciþ1 belong
to distance based partition di and diþ1, respectively. We
approximate pi by taking its MBR, ABCD. So, the darkly
shaded region is wrongly colored for MBR approximation.
The lightly shaded region is wrongly colored too, but it is
considered for distance based partition 〈di�1; di〉 i.e., for
cell pi�1. As the total error is calculated incrementally for
each cell, so the error for this lightly shaded region is
calculated only once for the cell pi�1. Let, ri and riþ1 be the
radii of ci and ciþ1, respectively. Hence, the width of cell pi



Fig. 5. Approximating a cell using MBR and tangents.

F.M. Choudhury et al. / Information Systems 42 (2014) 89–106 97
is riþ1�ri. The farthest distance from O to any point of the
MBR is Δr¼

ffiffiffi
2

p
� riþ1. So the points of the MBR that fall

within the distance riþ1 and
ffiffiffi
2

p
� riþ1 from point O get

wrongly colored with the pi0s color. From Eq. (1) we get
that the width of the distance based partitions increases
with the increase of the distance between the target
and the partition. So the maximum number of distance
based partitions in diþ1 that can be wrongly colored is
n¼ ðΔr�riþ1Þ=ðriþ1�riÞ.

For each distance based partition, corresponding angle
based partitions are calculated by taking the angle from
the midpoint of the target. So only the angle based
partitions that fall within the range (arctan riþ1=S=2,
�arctan riþ1=S=2) can lie in the darkly shaded region.
Let there are ai such angle based partitions in total. As the
difference in visual angle in consecutive partitions is μ, the
maximum variation in color for a cell is Δcmi ¼ n� ai � μ.
So when the total number of partitions is k and the area of
ith cell is Ai, the total error in coloring is

EMBR ¼ ∑
k

i ¼ 1
Δcmi � Ai ð4Þ

4.1.2. Tangential approximation
We obtain another approximation approach by taking

tangents in the midpoints of the two arcs that encloses a
cell. Here the area enclosed by two arcs is approximated by
the area enclosed by the tangents at their midpoints. In
Fig. 5(c) the cell is bounded by arcs ci and ciþ1 centered at
a corner O of the target T. We take two tangents AB and CD
of ci and ciþ1 at their midpoints mi and miþ1, respectively.
So we want to approximate the area bounded by these two
arcs with the trapezoid ABDC. Let the angles created at O
by ci and ciþ1 are θi and θiþ1 (in degrees). If we color the
trapezoid ABDC instead of the cell, the region that gets
wrong color is the shaded region of Fig. 5(c). Let the area of
the trapezoid ABDC be At1 , the radius of ciþ1 is riþ1,
the midpoint of EF is G, and the length of OG is x.

Then the length of EG is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2iþ1�x2

q
. The area of the

segment bounded by EG and ciþ1, Ac is ðθiþ1=360�
πr2iþ1Þ�x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2iþ1�x2

q
. If the area of the trapezoid ABFE

is At2 , then the area of the shaded region Ae is At1 �Ac�At2 .
According to this tangential approximation the region that
is wrongly colored due to cell HIFE is this shaded region
with area Ae.
Error bound analysis: In the case of MBR approximation
the cell bounded by two half circles is approximated by an
enclosing MBR, while for tangential approximation that
cell is approximated by a rectangle bounded by the
tangents of those two half circles. Referring to Fig. 5(b),
the cell bounded by arcs ci and ciþ1 is approximated by
rectangle ABDC and rectangle FBDE for MBR and tangential
approaches, respectively. In this figure, G is the midpoint of
ci and the farthest distance from G to any point inside the

approximated cell is Δr¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2iþ1þðriþ1�riÞ2

q
. So the points

inside the darkly shaded region are wrongly colored.
As the width of the distance based partitions relates
inversely to the distance between the target and the
partition (Eq. (1)), the maximum number of distance
based partitions in diþ1 that can be wrongly colored is
n¼ ðΔr�riþ1Þ=ðriþ1�riÞ. In the case of angle based parti-
tioning, only the angle based partitions that fall within the
range (arctan riþ1=ðS=2þriÞ, �arctan riþ1=ðS=2þriÞ) can
lie in the darkly shaded region inside the rectangle EFBD.
Let there are ai such angle based partitions in total. As the
difference in visual angle in consecutive partitions is μ, the
maximum variation in color for a cell is Δcti ¼ n� ai � μ.
So when the total number of partitions is k and the area of
ith cell is Ai, the total error is

ETangent ¼ ∑
k

i ¼ 1
Δcti � Ai ð5Þ

In the above sections, we discussed our approach to
construct target-centric visibility color map. The approach is
the same for the viewer-centric visibility color map with an
additional initialization step. The details of viewer-centric
VCM is discussed below.

4.2. Viewer-centric VCM

A viewer-centric VCM is constructed by calculating the
visibility of the surrounding space for a given viewpoint q
and a set O of obstacles. Unlike the target-centric VCM
where a particular target is specified, in the case of the
viewer-centric VCM, a particular viewer position is speci-
fied. To measure the visibility using Eqs. (1) and (2) in the
case of the viewer-centric VCM, first we need an initial
value of the size S of a target from the given information.

The visibility of any point farther than a distance dmax is
not visually distinguishable if the perceived visual angle of
that point is less than the angular resolution μ from q (Section



Table 2
Parameters.

Parameter Range Default

Angular resolution (μ) 1, 2, 4, 8, 16 4
Minimum block size (ϑ) 1, 2, 4, 8, 16 1
Query space area (AQ) 0.05, 0.10, 0.15, 0.2, 0.25 0.15
Field of view (FOV) 60, 120, 180, 240, 300, 360 120
Length of target (LT) 0.05, 0.10, 0.15, 0.2, 0.25 0.15
Dataset size (DS) 5k, 10k, 15k, 20k, 25k

Table 3
Comparison with the baseline.

Dataset Baseline VCME

Total time (h) Error (%) Total time (s)

British 58 30.33 253.07
Boston 61 31.76 245.26

F.M. Choudhury et al. / Information Systems 42 (2014) 89–10698
3.1.1). Based on this fact, we assume a circular region R of
radius dmax centered at q to construct the VCM of R only, as
the visibility of the points outside R is not distinguishable by a
viewer at q. Using Eq. (1), we calculate the size S of a target for
which visual angle V ¼ μ is perceived at distance dmax. After
taking S as the size of the target, the steps of our approach
discussed for the target-centric VCM is applied in the same
manner to construct the viewer-centric VCM.

4.3. Incremental processing

During the computation of the VCM, we have assumed
that the field of view (FOV), i.e., the orientation of the
viewpoint or the target is fixed. At a particular orientation
or gaze direction, only the extents of the space that is inside
the FOV are visible. With the change in viewing direction,
some areas that were previously outside the FOV become
visible. In this case, we do not need to compute the full
VCM each time, rather we can incrementally construct the
VCM by computing for the newly visible parts only.

In the incremental process, the only information that
varies is the gaze direction. So, as a preprocessing step we
can construct the color-tree and the visible region quad-
tree in the above discussed method by considering the FOV
as 3601. A VCM is then constructed by combining the color-
tree and the quad-tree for a particular gaze direction. When
the gaze direction changes, only the uncolored quad-tree
blocks that are now included in the visibility region are
assigned colors. Hence the color-tree and the quad-tree are
constructed only once. This reduces the computational
complexity to a great extent by avoiding same calculations
repetitively. From our conducted experiments we also
observe that the processing time required to combine the
color-tree and the quad-tree is much smaller than the
processing time required to construct the visibility region
quad-tree for a dataset of densely distributed large number
of obstacles (Sections 5.3.1 and 5.4.1). So for such cases we
can significantly improve the performance of our proposed
solution by adopting the preprocessing strategy.

5. Experimental evaluation

We evaluate the performance of our proposed algorithm
for constructing the visibility color map (VCM) with two real
datasets. Specifically, at first we compare our approach with
a baseline approach that approximates the total space into a
regular grid and compute visibility from the midpoint of
each grid cell, and then we compare our two approximation
algorithms, i.e., MBR approximation (VCMM) and tangential
approximation (VCMT) with the exact method (VCME). The
algorithms are implemented in Cþþ and the experiments
are conducted on a core i5 2.40 GHz PC with 3 GB RAM,
running Microsoft Windows 7.

5.1. Experimental setup

Our experiments are based on two real datasets: (1)
British2 representing 5985 data objects obtained from
2 http://www.citygml.org/index.php?id=1539
British ordnance survey3 and (2) Boston4 representing
130 043 data objects in Boston downtown. In both data-
sets, objects are represented as 3D rectangles that are used
as obstacles in our experiments. For both datasets, we
normalize the dataspace into a span of 10 000�10 000
square units. For 2D, the datasets are normalized by
considering the z-axis value as 0. All obstacles are indexed
by an Rn-tree, with the disk page size fixed at 1 kB.

The experiments investigate the performance of the
proposed solutions by varying five parameters: (i) angular
resolution (μ) in arcminutes, (ii) the threshold of the quad-
tree block size (ϑ) as the multiple of the calculated minimum
size (as explained in Section 3.3.1), (iii) the area of the space
(AQ) as the percentage of the total area, (iv) field of view
(FOV) in degrees, and (v) the length of the target (LT) as the
percentage of the length of total dataspace. We have also
varied the dataset size using both Uniform and Zipf distribu-
tion of the obstacles. The range and default value of each
parameter are listed in Table 2. In concordance with human
vision, the default values of μ and FOV are set as 4 arcmin
[11] and 1201 [19], respectively. The minimum threshold of
quad-tree block size as calculated in Section 3.3.1 is used as
the default value of ϑ. The default values of other parameters
are set to their median values.

The performance metrics that are used in our experi-
ments are (i) the total processing time, (ii) the total I/O
cost, and (iii) the error introduced by the two approxima-
tions: VCMM and VCMT. We calculate the approximation
error as the deviation from the color map of VCME, i.e.,

error¼ ∑iðcei � Ai�cai � AiÞ
∑icei � Ai

ð6Þ

here cei is the color of ith cell in VCME, cai is the color of ith
cell in VCMM or VCMT, and Ai is the area of the ith cell.
3 http://www.ordnancesurvey.co.uk/oswebsite/indexA.html
4 http://www.bostonredevelopmentauthority.org/BRA_3D_Models/

3D-download.html

http://www.citygml.org/index.php?id=1539
http://www.ordnancesurvey.co.uk/oswebsite/indexA.html
http://www.bostonredevelopmentauthority.org/BRA_3D_Models/3D-download.html
http://www.bostonredevelopmentauthority.org/BRA_3D_Models/3D-download.html


Fig. 6. Real datasets used in the experiments. (a) British ordnance survey. (b) Boston downtown.

Fig. 7. Dataset distribution. (a) British ordnance survey. (b) Boston downtown.

Fig. 8. Effect of μ in 2D British (a and b) dataset.

F.M. Choudhury et al. / Information Systems 42 (2014) 89–106 99
For each experiment, we have evaluated our solu-
tion for the target at 100 random positions and reported
their average performance. We have conducted exten-
sive experiments using two datasets for both 2D and
3D spaces.5 Since 2D dataspace is a subset of 3D dataspace
and most of the real applications involve 3D scenario, we
omit the detailed results of 2D.
5.2. Comparison with the baseline

The performance improvement of our approach over
the baseline approach is measured in terms of the total
processing time required for computing the VCM. In the
naïve approach, we need to compute visibility of the target
from infinite number of points to construct the VCM as
5 Datasets and query sets used in the experiments are available for
download from the following link: http://www.buet.ac.bd/cse/users/
faculty/eunus/Datasets.zip.
every point in the dataspace acts as a viewpoint. Even
discretizing the surrounding space into 1000 points in
each dimension would give a total of 109 points in the 3D
space. We observe that the time required for such compu-
tation using British and Boston datasets are approximately
74 days and 128 days, respectively. As such naïve approach
is trivial, we can further improve it by dividing the data-
space into 500�500�500 cubic cells in 3D and choose
the visibility from the middle point of each cell to represent
the visibility of that entire cell. In the rest of the paper we
refer to this approach as the baseline approach to construct
the VCM. The comparison between the baseline approach
and our proposed solution VCME is presented in Table 3
in terms of total processing time and introduced error.
In this case the parameters are set to their default values
(Table 2). We observe that when compared to VCME, for
British dataset the baseline approach runs 818 times
slower and introduces 30% error, while for Boston dataset
the baseline approach runs 837 times slower and intro-
duces 32% error (Figs. 6 and 7).

http://www.buet.ac.bd/cse/users/faculty/eunus/Datasets.zip
http://www.buet.ac.bd/cse/users/faculty/eunus/Datasets.zip


Table 4
Error in VCMM and VCMT for varying μ in 2D.

Dataset Method Error (%)

1 2 4 8 16

British VCMM 2.0 1.64 4.25 4.42 5.38
VCMT 0.01 0.01 0.01 3.64 3.91

Fig. 9. Effect of ϑ in 2D British (a and b).

Table 5
Errors in VCMM and VCMT for ϑ in 2D.

Dataset Method Error (%)

1 2 4 8 16

British VCMM 0.01 2.74 9.29 12.59 12.83
VCMT 0.01 0.77 4.37 6.26 7.54

F.M. Choudhury et al. / Information Systems 42 (2014) 89–106100
5.3. Performance in 2D

In this section, we present experimental results for 2D
datasets.

5.3.1. Effect of μ
In this experiment, we vary the value of μ as 1, 2, 4, 8,

and 16 arcmin and measure the total processing time and
I/Os for British datasets (Fig. 8). We also present the errors
resulted in the two approximations (Table 4).

For British dataset, on average VCMM and VCMT are 65%
times and 17% times faster than VCME, respectively. In
general, with the increase in μ, the cell size increases and
the number of total partition in the dataspace decreases.
Moreover, larger μ yields fewer branching in the visibility
region quad-tree. So, with the increase in μ, total proces-
sing time and I/O cost decrease rapidly for both datasets.
The total I/O cost is composed of (i) cost of partitioning
the total dataspace to form the color-tree, (ii) cost of
retrieving obstacles to form visibility region quad-tree,
and (iii) cost of combining the color-tree and quad-tree to
form the VCM. As these three costs hardly differ for all
three approaches, they result in similar I/O cost. On the
other hand, as with the increase in μ, the area of partition
cells (Ai) gets larger, the estimated error increases for
both VCMM and VCMT (Eq. (6)). The average errors
introduced in VCMM and VCMT are 3.5% and 1.5%,
respectively.

5.3.2. Effect of ϑ
In this experiment, we vary the quad-tree block size (ϑ)

as 1, 2, 4, 8, and 16 times of the minimum threshold of a
quad-tree block. The results are presented in Fig. 9 and
Table 5.
For British dataset, VCMM is approximately 2.3 times
faster than both VCMT and VCME. As explained earlier,
VCMM and VCMT yield I/O costs similar to VCME. On
average, VCMM and VCMT introduce 7.5% and 3.8% errors,
respectively. These amounts of errors do not have notice-
able impact on many practical applications. We observe
from Eq. (1) that the cells generated near the target are
very small. Therefore the approximations of the cells close
to the target are almost similar to the corresponding exact
cells. The cell size increases with the increase of distance
and a significant portion of errors is introduced for these
distant cells. As the visibility of the target from distant
cells is insignificant in most of the cases, the error in such
cells is tolerable.

In general, with the increase in ϑ, the introduced errors
in VCMM and VCMT increase as a larger quad-block size
approximates the cells with lesser accuracy. But with
the increase in ϑ, the total processing time and I/O cost
reduce significantly. Hence for applications that can toler-
ate reduced accuracy, a large ϑ can result into better
performance.

5.4. Performance in 3D

In this section, we present the experimental results
for 3D British and Boston datasets by varying different
parameters.

5.4.1. Effect of μ
In this experiment, we vary the value of μ as 1, 2, 4, 8,

and 16 arcmin and measure the total processing time and
I/Os for British and Boston datasets (Fig. 10). We also
present the errors resulted in the two approximation
methods as shown in Table 6.



Fig. 10. Effect of μ in 3D British (a and b) and Boston (c and d).

Table 6
Errors in VCMM and VCMT for μ in 3D.

Dataset Method Error (%)

1 2 4 8 16

British VCMM 4.56 8.02 8.11 10.46 15.25
VCMT 4.1 7.63 7.76 8.89 13.89

Boston VCMM 3.31 5.03 8.02 9.12 10.05
VCMT 3.12 4.70 7.62 8.57 9.79

F.M. Choudhury et al. / Information Systems 42 (2014) 89–106 101
For British dataset, on average VCMM and VCMT run only
5% and 3% faster than VCME, respectively. The difference in
I/O cost, i.e., the number of pages accessed is also negli-
gible among the three methods. As discussed earlier in
Section 3 the three methods differ only in the final phase,
i.e., combining the outcome of previous two steps to
produce the VCM. As we consider only full visibility of
the target object from a partition cell, a huge number of
cells in the dataspace fall into the obstructed region. So in
the final phase the three solutions perform similarly as
they have to combine the same color-tree and visible
region quad-tree. The average errors introduced in VCMM

and VCMT are 9% and 8%, respectively.
Although the results for both British and Boston data-

sets follow similar pattern, Boston dataset causes much
smaller I/O and computational cost. The reason is, in the
case of the densely populated Boston dataset, most of the
obstacles are pruned rapidly during the visible region
quad-tree formation. So there are lesser number of visibi-
lity computation and page access to construct VCM in
Boston dataset. The processing time of VCMM is on average
8% faster than that of VCME and VCMT. The average error
introduced in VCMM is 7%, whereas the more accurate
VCMT yields 6% error.

The I/O costs in the obstacle retrieval phase are the
same in all three methods. Thus in subsequent sections,
we show only the I/O cost required to combine the quad-
tree and the color-tree (i.e., the final phase of constructing
the VCM).

5.4.2. Effect of ϑ
In this experiment, we vary the quad-tree block size ϑ

as 1, 2, 4, 8, and 16 times of the minimum threshold of a
quad-tree block and show the results in Fig. 11 and Table 7.

For British dataset, the computational and I/O costs are
similar for all three methods, e.g., on average VCMM runs
only 3% faster than VCME. Because, similar to the case of
varying μ, the three phases of constructing VCM differ
slightly for these methods. The average error introduced in
VCMM and VCMT is about 10%. The results derived from
Boston dataset are similar to that of British dataset. VCMM

runs about 3% faster than both VCME and VCMT. The
average errors introduced in the approximation methods
are about 9%.

As the errors introduced by two approximations show
similar trends for AQ, FOV, and LT, we show only the
total processing time and the I/O cost in the subsequent
sections.

5.4.3. Effect of AQ

In this experiment, we vary the query area AQ as 5%, 10%,
15%, 20%, and 25% of the total dataspace (Fig. 12(a)–(d)).



Fig. 11. Effect of ϑ in 3D British (a and b) and Boston (c and d).

Table 7
Errors in VCMM and VCMT for ϑ in 3D.

Dataset Method Error (%)

1 2 4 8 16

British VCMM 8.11 9.31 10.15 11.83 14.96
VCMT 7.76 9.00 9.86 11.05 12.72

Boston VCMM 8.02 9.08 9.38 9.82 11.03
VCMT 7.62 8.82 9.06 8.98 10.29

F.M. Choudhury et al. / Information Systems 42 (2014) 89–106102
In the case of British dataset, VCMM and VCMT run 5% and
3% faster than VCME, respectively. For Boston dataset,
VCMM runs 5% faster than both VCME and VCMT. The I/O
cost and the total processing time increase for all three
methods with the increase in AQ, as we need to consider
higher number of cells and obstacles to construct the VCM.
5.4.4. Effect of FOV
In this experiment, we vary the field of view (FOV) as

60, 120, 180, 240, 300, and 360 degrees for British and
Boston datasets (Fig. 13). When FOV is set to 3601, the FOV
covers the surrounding space in all directions. We observe
that the processing time and I/Os increase with the
increase of FOV, which is expected.

Like the previous cases, the total processing time and
I/O cost are similar for all three methods. For British and
Boston dataset, VCMM runs 3% and 4% faster than both
VCME and VCMT, respectively. With the increase of FOV
from 60 to 3601, the total processing time of VCME

increases by nearly 40% and 46% for British and Boston
dataset, respectively. On the other hand, the I/O costs
increase 33% and 31% for British and Boston dataset,
respectively.
5.4.5. Effect of LT
In this experiment, we vary the length of target LT as

5%, 10%, 15%, 20%, and 25% of the total length of the
dataspace. In general, with the change in LT, no significant
change in performance is observed for any of the datasets
(Fig. 14).
5.4.6. Effect of varying DS

In this experiment we vary the number and distribu-
tion of obstacles and measure the performance of our
approximation methods in terms of I/O cost, total proces-
sing time, and approximation errors. We vary DS as a set of
5k, 10k, 15k, 20k, and 25k obstacles while keeping the
other parameters at their default values. We consider both
Uniform (U) and Zipf (Z) distributions of the obstacles.

In general, as the number of obstacles increases, the
area of the dataspace gets more obstructed. So during the
final phase of VCM construction (i.e., combining color-tree
and visible region quad-tree), computational costs and I/O
costs get reduced. Consequently, the overall costs decrease
with the increase in DS for both Uniform and Zipf distribu-
tion. In the case of Uniform and Zipf distributions, as the
number of obstacles is varied from 5k to 25k, the total
processing time decreases nearly 40% and 20%, respec-
tively for all three methods. On the other hand, the
I/O costs decrease approximately 18% and 17% with
the increase of DS for Uniform and Zipf distributions,
respectively.



Fig. 12. Effect of AQ in 3D British (a and b) and Boston (c and d).

Fig. 13. Effect of FOV in 3D British (a and b) and Boston (c and d).

F.M. Choudhury et al. / Information Systems 42 (2014) 89–106 103
6. Related works

The notion of visibility is actively studied in different
contexts: computational geometry (e.g., [21–23]), compu-
ter graphics and visualization (e.g., [4,9]), urban planning
and architecture (e.g., [24–26]), and spatial databases (e.g.,
[1–3]). Most of these techniques consider visibility as a
binary notion, i.e., a point is either visible or invisible from
another point (Fig. 15).
6.1. Visibility in computational geometry

Several approaches have been proposed to
construct visibility graph and visibility polygon [21–
23,27–29] for visibility computation in the context of
computational geometry. A visibility graph is defined
by a set P of n points inside a polygon Q where two
points p; qAP are joined by an edge if the segment
pq�Q [22].



Fig. 14. Effect of LT in 3D British (a and b) and Boston (c and d).

Fig. 15. Effect of varying dataset size in 3D (a and b).

F.M. Choudhury et al. / Information Systems 42 (2014) 89–106104
The visibility polygon V(q) of a point q in a polygon P is
defined as the set of points in P that are visible from q [21].
Two points inside a polygon are visible to each other if
their connecting segment remains completely inside the
polygon. Zarei and Ghodsi consider the problem of com-
puting the visibility polygon of a query point inside a non-
simple polygon [21]. They require less time to compute the
visibility polygon than the previous works, in exchange of
costly preprocessing of the given input and an expensive
data structure of size Oðn3Þ. Later, Asano et al. improved
the preprocessing time and reduced the space require-
ment [23,29]. Similar studies are also conducted in [27,28].

Though the algorithms above efficiently solve the problem
of constructing visibility polygon, they must rely on prepro-
cessing and/or accessing all obstacles. Consequently, they are
inappropriate for many spatial database applications as any
update will invalidate the preprocessed data and accessing all
objects for each query point is not feasible in such cases.
Moreover, they consider visibility as a binary notion, which
makes these approaches inapplicable where quantification of
visibility is required.
6.2. Visibility in computer graphics and visualization

In computer graphics, the visibility map refers to a
planar subdivision that encodes the visibility information,
i.e., which points are mutually visible [4]. Two points are
mutually visible if the straight line segment connecting
these points does not intersect with any obstacle. If a scene
is represented using a planar straight-line graph, a hor-
izontal (vertical) visibility map is obtained by drawing a
horizontal (vertical) straight line l through each vertex p of
that graph until l intersects an edge e of the graph or
extends to infinity. The edge e is horizontally (vertically)
visible from p. A large body of works [5–9] construct such
visibility maps efficiently.

Given a collection of surfaces representing boundaries
of obstacles, Tsai et al. consider visibility problem as
determining the regions of space or the surfaces of
obstacles that are visible to an observer [30,31]. They
model visibility as a binary notion and find the light and
dark regions of a space for a point light source. Kim et al.
introduced the completely visible region [32], which is



F.M. Choudhury et al. / Information Systems 42 (2014) 89–106 105
defined as the set of all points in 3D space that are
completely visible from a given point S.

Above methods involve the computation of visible
surfaces from a viewpoint and do not consider visibility
factors such as angle and distance to quantify the visibility
of a target object.

6.3. Visibility in urban planning and architecture

The visibility related problems are also studied in urban
planning and architecture, often with the use of geogra-
phical information systems data as a modeling tool
[33–35]. In environmental planning, the visibility is assessed
using computerized simulation to predict the visual con-
sequences of alterations in the urban landscapes [24,25].
Hernandez et al. [26] propose a method that is useful to
planners and designers to choose locations where new
buildings best integrate into the landscape in terms of its
visual impact. These methods also do not quantify the
visibility and treat visibility as a binary notion. Recently
Bartie et al. [36] propose a number of visual metrics
to quantify how much of a landmark is visible from its
surroundings. This approach assumes all obstacles are in
main memory. Moreover, the work in [36] does not prune
irrelevant obstacles of the dataset while determining the
visibility, and hence is not suitable for applications com-
prising a large number of obstacles.

Software systems for 3D data visualization and render-
ing are also available for architects and urban planner.
Lumion [37] is an architectural visualization and walk-
through software for urban planning, which focuses on
scene creation and video rendering of 3D data. Google
SketchUp [38] is widely used in 3D modeling for engineer-
ing applications and enables placement of its models in
Google Earth [39]. Autodesk [40] provides a wide range of
softwares including AutoCAD [41] for 3D modeling and
Maya [42] for 3D animation and simulation. The other
commercial softwares [43,44] used in urban planning and
architecture mostly focus on 3D modeling and rendering.
Though these softwares facilitate platforms to create and
render 3D objects with functionalities like animation and
walk-through, they do not provide any functionality for
quantifying visibility of a 3D object. Our proposed VCM
techniques can be integrated with these softwares to
enable them answering many realistic visibility queries
that require quantification of visibility in a 3D space.

6.4. Visibility in spatial queries

Visibility problems studied in spatial databases usually
involve finding the nearest object to a given query point
in the presence of obstacles. In recent years, several
variants of the nearest neighbor (NN) queries have been
proposed that include Visible Nearest Neighbor (VNN)
query [1], Obstructed NN (ONN) query [45], Continuous
Obstructed NN (CONN) query [2], and Continuous Visible
NN query [3].

A CNN query finds the k NNs for a moving query point
[46]. Gao et al. propose a variation of CNN; namely,
a CONN query [2]. Given a dataset P, an obstacle set O,
and a query line segment q in a 2D space, a CONN
query retrieves the NN of each point on q according
to the obstructed distance. Nutanong et al. introduce an
approach to find the NN that is visible to a query point [1],
which uses an incremental approach to retrieve the
obstacles efficiently. For efficient obstacle retrieval in 3D
dataspaces, many other algorithms are introduced recently
[47–49].

The aforementioned spatial queries find the nearest
object in an obstructed space from a given query point
where query results are ranked according to visible dis-
tances from that query point. Instead of quantifying
visibility as a non-increasing function from a target to a
viewpoint, they label a particular point or region as either
visible or invisible. But for constructing a VCM of the entire
space, such binary notion is not applicable.

Recently the concept of maximum visibility query is
tossed in [10] that considers the effect of obstacles during
quantifying visibility of a target object. They measure the
visibility of a target from a given set of query points and
rank these query points based on the visibility measured
as the visible surface area of the target. This approach is
not applicable for constructing the VCM as we need to
compute the visibility for every viewpoint of the dataspace
by considering both the distance and the angle between a
target and a viewpoint.
7. Conclusion

In this paper, we have proposed a technique to com-
pute a visibility color map (VCM) that forms the basis of
many real-life visibility queries in 2D and 3D spaces.
A VCM quantifies the visibility of (from) a target object
from (of) each viewpoint of the surrounding space
and assigns colors accordingly in the presence of obstacles.
Our approach exploits the limitation of a human eye or a
lens to partition the space into cells in the presence
of obstacles such that the target appears same from all
viewpoints inside a cell.

Our proposed solution significantly outperforms the
baseline approach by at least 800 times and six orders of
magnitude in terms of computational time and I/O cost,
respectively for both datasets. Our conducted experiments
on real 2D and 3D datasets demonstrate the efficiency of
our approximations, VCMM and VCMT. On average, the
approximations VCMM and VCMT improve the processing
time by 65% and 17% over VCME, respectively and require
almost similar I/O costs. Both VCMM and VCMT improve the
efficiency of VCME by introducing only 9% and 5% error on
average.
Acknowledgments

This research has been conducted at Samsung Innova-
tion Lab in the Department of Computer Science and
Engineering (CSE), Bangladesh University of Engineering
and Technology (BUET). This work is supported by the
grant for Advanced Research in Science from the Ministry
of Education, Govt. of the People0s Republic of Bangladesh.



F.M. Choudhury et al. / Information Systems 42 (2014) 89–106106
References

[1] S. Nutanong, E. Tanin, R. Zhang, Incremental evaluation of visible
nearest neighbor queries, IEEE Trans. Knowl. Data Eng. 22 (2010)
665–681.

[2] Y. Gao, B. Zheng, Continuous obstructed nearest neighbor queries in
spatial databases, in: SIGMOD, 2009, pp. 577–590.

[3] Y. Gao, B. Zheng, W.-C. Lee, G. Chen, Continuous visible nearest
neighbor queries, in: EDBT, 2009, pp. 144–155.

[4] Algorithms and Theory of Computation Handbook, CRC Press LLC,
1999.

[5] J. Bittner, Efficient construction of visibility maps using approximate
occlusion sweep, in: SCCG, 2002, pp. 167–175.

[6] J. Grasset, O. Terraz, J. Hasenfratz, D. Plemenos, et al., Accurate scene
display by using visibility maps, in: SCCG, 1999.

[7] T. Keeler, J. Fedorkiw, S. Ghali, The spherical visibility map, Comput.
Aided Des. 39 (1) (2007) 17–26.

[8] P. Wonka, Visibility in computer graphics, EPB Plan. Des. 30 (2003)
729–755.

[9] A. Stewart, T. Karkanis, Computing the approximate visibility map,
with applications to form factors and discontinuity meshing, in:
EGWR, 1998, pp. 57–68.

[10] S. Masud, F.M. Choudhury, M.E. Ali, S. Nutanong, Maximum visibility
queries in spatial databases, in: ICDE, 2013, pp. 637–648.

[11] C. Rao, E. Wegman, J. Solka, Handbook of Statistics, vol. 24,
North-Holland Publishing Co, 2005.

[12] J. Baird, Psychophysical Analysis of Visual Space, Pergamon Press,
London, 1970.

[13] D. McCready, On size, distance, and visual angle perception, Atten.
Percept. Psychophys. 37 (4) (1985) 323–334.

[14] P. Kaiser, The Joy of Visual Perception, York University, 1996.
[15] K. Morling, Geometric and Engineering Drawing, 3rd edition,

Routledge, 2012.
[16] B.H. Walker, Optical Engineering Fundamentals, 2nd ed. SPIE Press,

2009.
[17] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The R*-tree: an

efficient and robust access method for points and rectangles, in:
SIGMOD, 1990, pp. 322–331.

[18] A. Guttman, R-trees: a dynamic index structure for spatial searching,
in: SIGMOD, 1984, pp. 47–57.

[19] D. Atchison, G. Smith, Optics of the Human Eye, Butterworth-
Heinemann, Oxford, UK, 2000.

[20] H. Samet, The Design and Analysis of Spatial Data Structures,
Addison-Wesley, MA, 1990.

[21] A.R. Zarei, M. Ghodsi, Efficient computation of query point visibility
in polygons with holes, in: SCG, 2005, pp. 6–8.

[22] B. Ben-Moshe, O. Hall-Holt, M.J. Katz, J.S.B. Mitchell, Computing the
visibility graph of points within a polygon, in: SCG, 2004, pp. 27–35.

[23] T. Asano, T. Asano, L.J. Guibas, J. Hershberger, H. Imai, Visibility of
disjoint polygons, in: Algorithmica, 1986, pp. 49–63.

[24] E. Lange, Integration of computerized visual simulation and visual
assessment in environmental planning, Landsc. Urb. Plan. 30 (1–2)
(1994) 99–112.
[25] H.-D. Shang, A method for creating precise low-cost landscape
architecture simulations combining computer-aided design with
computer video-imaging techniques, Landsc. Urb. Plan. 22 (1992)
11–16.

[26] J. Hernndez, L. Garca, F. Ayuga, Assessment of the visual impact
made on the landscape by new buildings: a methodology for site
selection, vol. 68, 2004, pp. 15–28.

[27] S. Suri, J. O0Rourke, Worst-case optimal algorithms for constructing
visibility polygons with holes, in: Symposium on Computational
Geometry, 1986, pp. 14–23.

[28] P.J. Heffernan, J.S.B. Mitchell, An optimal algorithm for computing
visibility in the plane, in: WADS, 1991, pp. 437–448.

[29] T. Asano, T. Asano, L.J. Guibas, J. Hershberger, H. Imai, Visibility-
polygon search and Euclidean shortest paths, in: FOCS, 1985,
pp. 155–164.

[30] Y. Tsai, L. Cheng, S. Osher, P. Burchard, G. Sapiro, Visibility and
its dynamics in a PDE based implicit framework, J. Comput. Phys.
199 (1) (2004) 260–290.

[31] L. Cheng, Y. Tsai, Visibility optimization using variational approaches,
Commun. Math. Sci. 3 (3) (2005) 425–451.

[32] D.S. Kim, K.-H. Yoo, K.-Y. Chwa, S.Y. Shin, Efficient algorithms for
computing a complete visibility region in three-dimensional space,
in: Algorithmica, 1998, pp. 201–225.

[33] E. Peccol, C.A. Bird, T.R. Brewer, GIS as a tool for assessing the
influence of countryside designations and planning policies on
landscape change, J. Environ. Manag. 47 (1996) 355–367.

[34] W. Suleiman, T. Joliveau, E. Favier, 3D urban visibility analysis with
vector GIS data, in: GISRUK, 2011.

[35] P.P.-J. Yang, S.Y. Putra, W. Li, Viewsphere: a gis-based 3D visibility
analysis for urban design evaluation, in: Environment and Planning
B: Planning and Design, vol. 34, 2007.

[36] P. Bartie, F. Reitsma, S. Kingham, S. Mills, Advancing Visibility Modelling
Algorithms for Urban Environments, vol. 34, 2010, pp. 518–531.

[37] Lumion, 〈http://lumion3d.com/urban-planning-software〉.
[38] Google Sketchup, 〈http://www.sketchup.com〉.
[39] Google Earth, 〈http://www.google.com/earth〉.
[40] Autodesk, 〈http://www.autodesk.com〉.
[41] Autocad, 〈http://www.autodesk.com.au/products/autodesk-autocad/

overview〉.
[42] Maya, 〈http://www.autodesk.com/products/autodesk-maya/overview〉.
[43] Cityengine, 〈http://www.esri.com/software/cityengine〉.
[44] Virtuelcity, 〈http://www.virtuelcity.com〉.
[45] J. Zhang, D. Papadias, K. Mouratidis, M. Zhu, Spatial queries in the

presence of obstacles, in: EDTB, 2004, pp. 366–384.
[46] Y. Tao, D. Papadias, Q. Shen, Continuous nearest neighbor search, in:

VLDB, 2002, pp. 287–298.
[47] I. Sipiran, B. Bustos, T. Schreck, Data-aware 3D partitioning for generic

shape retrieval, in: Computers and Graphics, 2013, pp. 460–472.
[48] P. Papadakis, I. Pratikakis, T. Theoharis, G. Passalis, S. Perantonis, 3D

object retrieval using an efficient and compact hybrid shape
descriptor, in: Eurographics Workshop on 3D Object Retrieval, 2008.

[49] M. Ali, E. Tanin, R. Zhang, L. Kulik, A motion-aware approach for
efficient evaluation of continuous queries on 3D object databases,
VLDB J. 19 (5) (2010) 603–632.

http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref1
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref1
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref1
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref7
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref7
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref8
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref8
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref11
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref11
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref12
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref12
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref13
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref13
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref14
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref15
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref15
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref16
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref16
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref19
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref19
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref20
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref20
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref24
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref24
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref24
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref25
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref25
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref25
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref25
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref30
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref30
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref30
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref31
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref31
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref33
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref33
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref33
http://lumion3d.com/urban-planning-software
http://www.sketchup.com
http://www.google.com/earth
http://www.autodesk.com
http://www.autodesk.com.au/products/autodesk-autocad/overview
http://www.autodesk.com.au/products/autodesk-autocad/overview
http://www.autodesk.com/products/autodesk-maya/overview
http://www.esri.com/software/cityengine
http://www.virtuelcity.com
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref49
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref49
http://refhub.elsevier.com/S0306-4379(13)00167-1/sbref49

	Scalable visibility color map construction in spatial databases
	Introduction
	Problem formulation and preliminaries
	Problem formulation
	Factors affecting visibility
	Relative position of the lens and the target
	Obstacles


	Constructing a VCM
	Partitioning space into equi-visible cells
	Distance based partition
	Angle based partition

	Computing the effects of obstacles
	Merging cells with visible regions
	Indexing visible regions
	Indexing cells and constructing VCM


	Extensions
	Approximation of partitions
	MBR approximation
	Tangential approximation

	Viewer-centric VCM
	Incremental processing

	Experimental evaluation
	Experimental setup
	Comparison with the baseline
	Performance in 2D
	Effect of μ
	Effect of ϑ

	Performance in 3D
	Effect of μ
	Effect of ϑ
	Effect of AQ
	Effect of FOV
	Effect of LT
	Effect of varying DS


	Related works
	Visibility in computational geometry
	Visibility in computer graphics and visualization
	Visibility in urban planning and architecture
	Visibility in spatial queries

	Conclusion
	Acknowledgments
	References




