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Abstract—The task of maximizing coverage using multiple
robots has several applications such as surveillance, exploration,
and environmental monitoring. A major challenge of deploying
such multi-robot systems in a practical scenario is to ensure
resilience against robot failures. A recent work [1] introduced the
Resilient Coverage Maximization (RCM) problem where the goal
is to maximize a submodular coverage utility when the robots are
subject to adversarial attacks and/or failures. The RCM problem
is known to be NP-hard. The state-of-the-art solution of the
RCM problem [1] employs a greedy approximation strategy with
theoretical performance guarantees. In this paper, we propose
two approximation algorithms for the RCM problem, both of
which empirically outperform the existing solution in terms of
accuracy and/or execution time. To demonstrate the effectiveness
of our proposed solution, we empirically compare our proposed
algorithms with the existing solution and a brute force optimum
algorithm.

Index Terms—Coverage Maximization, Multi-Robot Systems,
Resilience

I. INTRODUCTION

Tasks such as surveillance [3], tracking [2], and motion
planning [7] can be formulated as an optimization problem
that aims to maximize the coverage of a set of target ob-
jects. These coverage maximization tasks can be benefited
by the use of multiple robots as opposed to a single robot.
Indeed, the advancements in robotic mobility, sensing, and
communication technology have led to the use of multiple
collaborating robots to support such tasks [4]-[6]. But a major
challenge for practical deployment of such multi-robot systems
is to make the robots resilient to failures. For example, the
robots may undergo adversarial attacks [10], or the field-of-
view of some robots may get occluded due to environmental
hazards [11], or the sensors may stop working due to technical
malfunction [12]. In this paper, our goal is to devise coverage
maximization algorithms that are resilient to such failures.

The standard coverage maximization problem has been well
studied in literature [15]-[17]. But an adversarial variant of
the coverage maximization problem that ensures robustness
against robot failures has gained attention among the research
community only recently [8], [13], [14]. In a recent work,
Zhou et al. [1] introduced a new variant of the coverage
maximization problem that takes into account the resilience
of the multi-robot system. In their proposed problem setup,
a team of robots aim to cover a set of targets (Figure 1).
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Fig. 1. Two robots (drone signs) are tracking targets (black dots). The left
(right) robot has 3 (4) available trajectories (dotted arrow). Coverage region
of one trajectory of each robot is shown in gray. The highlighted trajectory
of the left (right) robot covers 3 (2) targets.

For each robot, there is a set of candidate trajectories, one
of which the robot will follow. The list of targets covered by
each robot trajectory is provided. It is assumed that at most «
robots may fail. But it is unknown which robots are going to
fail. The objective of the problem is to select one trajectory
for each robot such that the target coverage is maximized in
case of a worst case failure of o robots. We call this problem
Resilient Coverage Maximization (RCM) problem. The RCM
problem is known to be NP-hard [9].

Inspired by a recent work of Tzoumas et al. [13] that
explores generalized resilient optimization subject to matroid
constraints, Zhou et al. [1] proposed an approximation algo-
rithm for the RCM problem that involves two phases. In the
first phase, the algorithm determines the worst case subset of
« robots that could fail, and selects their trajectories. In the
next phase, assuming that the robots selected in the first phase
will actually fail, the rest of the robot trajectories are selected
greedily such that, for each greedy selection, the marginal gain
in target coverage is maximized. We call this algorithm the 2
Phase Greedy (2PG) algorithm. The execution time of the
2PG algorithm is O(P?), where P is the sum of the number
of trajectories of all the robots.

In this paper, we propose two algorithms for the RCM
problem that perform better than the 2PG algorithm in terms
of accuracy and/or execution time. Here, by accuracy of a
solution, we mean how much target coverage the solution
achieves with respect to an optimum solution. Our proposed
algorithms are called Ordered Greedy (OrG) algorithm and
Local Search (LS) algorithm.



The OrG algorithm produces an ordering of the robots
according to some sorting criteria, and greedily selects the
trajectories for each robot one after another according to the
above sorted order such that, for each robot, incremental
target coverage is maximized. The execution time of the OrG
algorithm is O(P). Experimental results show that the accuracy
of the OrG algorithm is slightly better than the 2PG algorithm,
and it runs much faster than the 2PG algorithm.

In the LS algorithm, we start with an initial solution of
the RCM problem. Then, at each iteration, we estimate the
accuracy of the neighbors of the current solution and select
a neighbor solution with higher estimated accuracy. The al-
gorithm terminates when we find a local optima. Empirical
studies show that the accuracy of the LS algorithm is signifi-
cantly better than the 2PG algorithm, while the two algorithms
are close to each other in terms of execution time.

In case of both algorithms, we consider several design
choices and compare the accuracy of the variants of the
algorithms that arise from different design choices. In case
of the OrG algorithm, the design choice is the sorting criteria
used to sort the robots. In case of the LS algorithm, design
choices include the initial solution and the attack model.

In summary, we make the following contributions:

e We propose two algorithms for the RCM problem,
namely, the OrG algorithm and the LS algorithm, which
perform better than the state-of-the-art 2PG algorithm in
terms of accuracy and/or execution time.

« We conduct extensive experiments with synthetic datasets
to evaluate the accuracy and execution time of our
proposed algorithms with respect to the 2PG algorithm
and a brute force optimum algorithm.

The organization of the rest of the paper is as follows.
In Section II, we provide the formal definition of the RCM
problem. Next, in Section III and Section IV, we describe the
OrG and LS algorithms respectively. The experimental results
are presented in Section V. Finally, in Section VI, we make
some concluding remarks.

II. PROBLEM FORMULATION

In this section, we describe the framework of the resilient
coverage maximization problem (Section II-A), present the
formal definition of the problem (Section II-B), and provide
some supplementary definitions (Section II-C).

A. Framework

We adopt the framework introduced by Zhou et al. [1]
in their work on resilient multi-target tracking. According to
the proposed framework, we consider a set of targets, X,
which are being tracked/covered by a set of mobile robots,
R. The targets can be mobile or stationary, distinguishable
or indistinguishable, and can have known or unknown motion
model. It is assumed that the robots have perfect localization
and can communicate with each other at all times. Using
sensors, communication, and filtering techniques, the robots
are able to calculate the estimated position of the targets.

Time is divided into rounds of finite duration. We consider
each round independently. At the beginning of a round, each
robot generates a set of candidate trajectories, one of which
will be followed in the current round. The set of trajectories of
a robot r is denoted be 7,.. The set of all robots’ trajectories is
denoted by Tg, i.e., Tr := Urcr 7. Let P be the number of
all trajectories, i.e., P = |Tr|. Here the notation |.4| denotes
the cardinality of set A.

Target Coverage function: The coverage of a trajectory
is defined as the set of targets that 7 covers, which we denote
by C(7). The target coverage function, F, takes as input a set
of trajectories 7 and returns the number of distinct targets cov-
ered by the trajectories in 7T, i.e., F(T) := |U,c7 C(7)|. The
target coverage function F is monotone and submodular [16].
Other examples of monotone and submodular target coverage
functions are mutual information and entropy [18].

Attack Model: We assume that at most a robots/sensors
can fail at a time. We consider the worst case/optimum attack
model as defined below. Given a set of trajectories 7T, the target
coverage function F, and an integer o denoting the maximum
attack size, an optimal attack on T of size « is defined as
follows.

A (T) := argmin F(T\A)
ACT

st A < a

In other words, an optimal attack on 7 of size « is a subset
of T of size at most a such that removal of the subset from
T results in maximum decrease of the target coverage. In the
above definition, the notation A\ B denotes the set of elements
in A that are not in B.

B. Problem Definition

Given a set of targets, a set of robots R, the trajectories
for the robots 7x, the attack size «, and a target coverage
function F, the Resilient Coverage Problem problem aims to
select a set of trajectories according to the following objective
function.

argmax F(S\A%(S))
SCTr

st |SNT =1, ¥rerR (1)

In other words, the solution subset contains one trajectory
per robot (enforced by the constraints), such that in case of an
optimal attack of size «, the target coverage of the remaining
robots is maximized.

C. Supplementary Definitions

A Feasible Solution is a subset of Tx that satisfies the
constraints in (1). A feasible solution corresponds to a valid
assignment of trajectories to robots, i.e., one trajectory per
robot. The feasible solution that maximizes the objective
function (1) is called the Optimum Solution. We denote the
optimum solution by S*. The Residual Coverage of a feasible
solution & is the number of targets covered by S after the
optimal attack set is removed from S. The residual coverage
of § is denoted by R(S). According to the above definition,
R(S) = F(S\AL(S)), where « is the attack size.



III. ORDERED GREEDY ALGORITHM

In this section, we present a class of greedy algorithms that
require O(P) evaluations of the target coverage function F.
The algorithm is named Ordered Greedy Algorithm (OrG) and
is presented below (Algorithm 1). In this algorithm, first we
sort the robots according to some sorting criteria (Line 1).
Then we consider the robots in the sorted order (Line 3). For
each robot, we greedily select the trajectory that maximizes
the incremental coverage of the targets (Line 4-5).

Algorithm 1 Ordered Greedy Algorithm
Input: R, T, o, F

Output: Set of trajectories, S

. TR| > ¢ sort(Tr, F)

1: <rq,ro,..
28 « 0

3: for i + 1to|R| do

4 7" ¢« argmax g F(SUT)
5: S+ SuTt* '

6: end for

7: return S

To perform the sorting of the robots, for each robot r,
we calculate a numerical value V(r), according to some
sorting criteria, and then sort the robots in increasing and/or
decreasing order of the assigned numerical value. We use the
following sorting criteria to evaluate the accuracy and perfor-
mance of the ordered greedy algorithms. Each criteria results
in two different variants of the ordered greedy algorithms: one
for increasing order, and one for decreasing order.

o Sum of Target Coverage: The numerical value of robot

r is the sum of the number of targets covered by all
the trajectories of r, ie., V(r) = > - [C(7)|. The
resultant ordered greedy algorithms are named OrG-S-
I and OrG-S-D (for increasing and decreasing order of
sorting, respectively).

o Size of Union of Target Coverage: The numerical value
of robot r is the number of distinct targets covered by
all the trajectories of r, i.e., V(r) = | Urer. C(7)|. The
resultant algorithms are named OrG-U-I and OrG-U-D.

o Maximum Individual Target Coverage: The numerical
value of robot r is the cardinality of the trajectory
of r that covers the maximum number of targets, i.e.,
V(r) = max,e7.|C(7)|. The resultant algorithms are
named OrG-M-I and OrG-M-D.

We also consider another variant where the ordering of
the robots is random (OrG-R). Note that, each of the above
algorithms requires O(P) evaluations of F. Here, P is the
sum of number of trajectories of all robots. To calculate the
numerical values of the robots, we need P evaluations of F.
Also, in Line 4 of Algorithm 1, the call to F is executed P
times in total. Thus, the total number of evaluations of F for
the ordered greedy algorithm is O(P).

IV. LOCAL SEARCH ALGORITHM

In this section, we describe a class of algorithms based on
local search technique. In a traditional local search algorithm,

we start with an initial solution. At each iteration, we make
small local changes to the current solution to form a set
of candidate neighboring solutions. Then we evaluate the
objective function on the neighboring solutions to find if
any improvement over the current solution is possible. If a
better solution is found, the search moves to that direction.
Otherwise, the algorithm terminates.

A tricky aspect of adopting a local search based approach to
the resilient coverage maximization problem is that evaluating
the objective function for a given solution is not straight-
forward. In this problem, the objective value of a solution
S is F(S\A%(S)). Thus, given a candidate solution S, in
order to evaluate the objective function for S, we are required
to construct an optimal attack on S. But constructing an
optimal attack on S is a combinatorially hard problem, which
requires exponential computation time with respect to the size
of S. Consequently, in this algorithm, we use computationally
feasible greedy attack models, instead of an optimal attack
model, to drive the local search. We denote the greedy attack
function by A, which is further discussed later in this section.

Algorithm 2 Local Search Algorithm
Input: R, T, o, F
Qutput: Set of trajectories, S
1: § « INIT(7%,F)
2. z + F(S\AL(S))
3: while TRUE do
f < FALSE
for all neighbor S of S do

4
5
6: A+ AL(S)
7.
8
9

%« F(S\A)
if 2 > z then
: 1.8,z « TRUE,S, #
10: break
11: end if

12:  end for

13:  if f = FALSE then
14 break

15:  end if

16: end while

17: return S

Now we describe the Local Search algorithm (Algorithm
2) in details. We start with an initial solution & (Line 1) and
the corresponding objective value z (Line 2). At each iteration
of the local search (Line 3-16), we consider all neighbors of
the current solution S (Line 5). Any feasible solution which
differs with S by exactly one trajectory is defined to be a
neighbor of S. For each neighbor S of S, we construct a
greedy attack on S, denoted by A (Line 6), and calculate
the corresponding objective value z (Line 7). If the candidate
solution is better than the current solution (Line 8), we restart
the iteration with updated solution and objective value (Line
9-10). If no neighbor leads to a solution better than the current
solution, the local search terminates (Line 4, 13-14), and the



current solution is returned (Line 17) as the solution of the
resilient coverage maximization problem.

Several variants of the local search algorithm arise when
we use different attack models (Line 2, 6) and different initial
solutions (Line 1). We consider the following two greedy
attack models. In both models, the attacker makes o greedy
choices, one after another, obeying the constraint that at most
one trajectory can be selected per robot.

o Attack Model I (Al): At each iteration, the attacker selects
the trajectory which maximizes the increase in target
coverage.

o Attack Model 2 (A2): Let U be the set of targets which
are covered by exactly one of the remaining trajectories.
At each iteration, the attacker selects the trajectory which
covers the maximum number of targets in U.

We consider two initial solutions as follows.

o Initial Solution I (11): The output of the Oblivious Greedy
algorithm (to be described in Section V-A).

e Initial Solution 2 (12): The output of the OrG-U-I algo-
rithm (described in Section III).

Two attack models and two initial solutions yield four
variants of the LS algorithm. We append the attack type and
initial solution type to name the variants. For example, LS-A1-
12 is the variant of the local search algorithm that uses attack
model 1 and initial solution 2.

Note that, in the local search algorithm, the number of
evaluations of F is dominated by the number of calls to the
attack function in Line 6. In case of both of the above attack
models, constructing a greedy attack requires O(aR) calls to
F, where R is the number of robots. Also, there are O(P)
neighbors of the current solution S. Consequently, in case
of both attack models, the local search algorithm requires
O(IaRP) evaluations of F, where I is the number of times
the local search iterates. But, by using some hash-based data
structures, we reduce the execution time of the local search
algorithm by a factor of 7', where T is the number of targets.
We describe the acceleration technique in Appendix A.

V. EXPERIMENTS

In this section, we empirically evaluate our proposed algo-
rithms and present the experimental results. First, we discuss
the experimental setup (Section V-A). Next, we compare the
accuracy (Section V-B) and execution time (Section V-C) of
our proposed algorithms with the 2PG algorithm. Finally, we
evaluate the performance of our proposed algorithms in case
of a non-optimal attack model (Section V-D).

A. Experimental Setup

Evaluation Metric: We use two metrics to empirically
evaluate our proposed algorithms: accuracy and execution
time. The accuracy of a feasible solution S is the ratio of the
residual coverages of S and §*, where S* is the optimum
solution. Thus, the accuracy of a feasible solution S is a
measure of the quality of S with respect to the optimum
solution §*. If, in an experiment, the optimum solution is

known, we directly report the accuracy of the solutions found
by the algorithms which are being compared. On the other
hand, if the optimum solution is unknown, we compute the
residual coverages of the solutions found by the algorithms and
report the relative accuracy with respect to the 2PG algorithm.
Note that, a higher residual coverage corresponds to higher
accuracy, and vice versa, since the ratio of residual coverages
of two feasible solutions equals the ratio of their accuracy.

Compared Algorithms: We empirically compare the per-
formance of our proposed algorithms (OrG and LS) with the
2PG algorithm. We additionally consider two straightforward
algorithms as follows:

e Brute Force algorithm: The Brute Force (BF) algorithm

determines the optimum solution of the RCM problem.
In this algorithm, we consider all feasible solutions,
construct an optimal attack on each feasible solution, and
report the feasible solution with maximum residual cov-
erage. Thus, the BF algorithm has exponential execution
time with respect to the number of robots.

o Oblivious Greedy algorithm: In the Oblivious Greedy
(0ObG) algorithm, we select, for each robot, the
trajectory that covers maximum number of targets.
Formally, the solution found by this algorithm is
U,cr argmax ., F({7}). The ObG algorithm makes P
calls to the target coverage function F.

Dataset: In our experiments, we use a synthetic dataset
generated as follows. First, we select the locations of the
targets and robots within a 10000 x 10000 2D grid with
uniform probability. For each robot, we consider 4 trajectories:
forward, backward, left, and right as shown in Figure 2.
We assume that the regions covered by the 4 trajectories
are rectangular (shown in gray). The targets falling inside a
rectangle are assigned to the corresponding trajectory.
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Fig. 2. Generation of Dataset.

Parameter Set: We use different sets of parameter values
for different experiments. For example, in the experiments
where we compute a brute force solution, we use only 6
robots to keep the total execution time in check. But for other
experiments we use higher number of robots. The values of
the parameters used in each experiment is mentioned in the
corresponding subsection. Each experiment is conducted 100
times and the average is reported. We assume that the number
of robot failures is equal to the attack size, a.

Platform: The algorithms are implemented using C++ pro-
gramming language. The experiments are conducted on a core-
17 2GHz PC with 8GB RAM, running Microsoft Windows 10.



(a) Oblivious Greedy Algorithm (R = 15, T = 150)

(b) Ordered Greedy Algorithm (R = 15, T = 150)

(c) Local Search Algorithm (R = 15, T = 150)
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Fig. 3. Comparison of accuracy of (a) ObG algorithm, (b) OrG algorithm, and (c) LS algorithm with 2PG algorithm.

B. Comparison of Accuracy

Relative Accuracy with respect to 2PG Algorithm: In
this experiment, we construct a dataset with 15 robots and 150
targets. We vary the attack size in increments of 3 and report
the average relative accuracy (in percentage) of our proposed
algorithms with respect to the 2PG algorithm (Figure 3). The
average standard deviation is shown in the legends.

The experimental results (Figure 3(a)) show that the ac-
curacy of the ObG algorithm is consistently lower than the
2PG algorithm. In case of the OrG algorithm, the OrG-I
variants (i.e., variants of OrG algorithm sorted in increasing
order) have better accuracy in comparison with their OrG-D
counterparts (Figure 3(b)). The accuracy of the 2PG and OrG-
R algorithms lie in between the OrG-I and OrG-D variants.

We argue that the increasing sorting order leads to an
even distribution of the targets to trajectories. Consequently,
the reduction of target coverage after an optimal attack is
smaller in case of the OrG-I variants as opposed to the
OrG-D ones. We empirically verify the correctness of the
above claim by conducting an experiment where we compare
the standard deviations of the incremental coverages at each
greedy iteration of OrG-U-I and OrG-U-D. We find that
the standard deviation of the OrG-D variant is on average
60% higher than the OrG-I variant, which provides empirical
evidence in support of our claim.

In case of the LS algorithm, experimental results (Fig-
ure 3(c)) show that attack model 2 (A2) leads to better accuracy
than attack model 1 (AI). Also, initial condition 2 (/2) gives
higher accuracy in comparison to initial condition 1 (/7). Thus,
LS-A2-12 has the highest accuracy among the LS variants.
Also, the accuracy of LS-A2-12 is significantly better than the
2PG algorithm across all attack sizes.

Comparison with Brute Force Algorithm: In this experi-
ment, we determine the accuracy of our proposed algorithms.
Note that, the accuracy of a feasible solution S is the ratio
of the residual coverages of S and S*, the optimum solution.
We compute the optimum solution using the BF algorithm,
which has exponential running time. Consequently, in this
experiment, we consider small instances of the RCM problem
with 6 robots and 60 targets, and use attack sizes 2, 3, and 4.

Accuracy wrt Brute Force Algorithm (R =6, T = 60)
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Fig. 4. Comparison of accuracy of proposed algorithms with BF algorithm.

For brevity of presentation, from now on, instead of report-
ing the accuracy of all the variants of our proposed algorithms,
we only report the results for the OrG variant OrG-U-I and
LS variant LS-A2-12 along with the oblivious greedy algorithm
ObG and 2PG algorithm. The experimental results (Figure 4)
show that the local search algorithm has the highest accuracy,
followed by the ordered greedy algorithm, 2PG algorithm, and
the oblivious greedy algorithm, which is in accordance with
the experimental results presented in the previous section. Note
that, the accuracy of BF algorithm is 1 or 100%.

C. Comparison of Execution Time

In this experiment, we vary the number of robots/targets
from 100 to 5000, and use an attack size of 10. The experimen-
tal results (Figure 5) show that the oblivious greedy algorithm
has the lowest execution time, followed by the ordered greedy
algorithm. The local search algorithm and the 2PG algorithm
are slower than the former two algorithms, and the local search
algorithm outperforms the 2PG algorithm as the number of
robots/targets goes past 1000. The experimental results are in
accordance with the time complexity analysis of the compared
algorithms presented in the previous sections. Note that, other
variants of the OrG and LS algorithm have similar execution
time as the counterpart compared above.



Execution Time (R = T, attack size = 10)
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Fig. 5. Comparison of execution time of the proposed algorithms with 2PG
algorithm.

D. Evaluation of Accuracy for Large Problem Instances

In this section, we evaluate the accuracy of our proposed
algorithms for large instances of the RCM problem. In case
of large problem instances, it is not feasible to compute
the residual coverage, because constructing an optimal attack
requires exponential time with respect to the number of robots.
Consequently, we resort to a non-optimal greedy attack model
to compute an estimation of the residual coverage. We use
attack model 2 (A2), outlined in Section IV, which is a greedy
approximate attack model computable in polynomial time.

Accuracy for Non-optimal Attack (R = 100, T = 1000)
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Fig. 6. Comparison of accuracy with Non-optimal Attack Model.

In this experiment, we use 100 robots and 1000 targets,
vary the attack size in increments of 20, and report the relative
accuracy with respect to the 2PG algorithm. The experimental
results (Figure 6) show that the accuracy of the proposed
algorithms using non-optimal attack model A2 is equivalent
to the accuracy found in previous sections using an optimal
attack model. The local search algorithm still has the best
accuracy among the compared algorithms.

VI. CONCLUSION

In this work, we have proposed two algorithms for the
coverage maximization problem with multiple robots in an ad-
versarial setting. Our proposed algorithms have outperformed

the state-of-the-art algorithm in terms of accuracy and/or
execution time. We have demonstrated the effectiveness of our
proposed solutions by conducting empirical studies.

In future, we intend to perform real world testing of our
proposed algorithms in the context of practical applications of
surveillance and patrolling. One may also consider reformulat-
ing the problem with a computationally feasible non-optimal
attack model, and reevaluate the performance of the existing
and proposed algorithms.
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(a) Oblivious Greedy Algorithm (R = 15, T = 150)
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(b) Ordered Greedy Algorithm (R = 15, T = 150)

(c) Local Search Algorithm (R = 15, T = 150)
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Fig. 7. Comparison of accuracy of (a) ObG algorithm, (b) OrG algorithm, and (c) LS algorithm with 2PG algorithm for random dataset.

APPENDIX A
ACCELERATION OF THE LOCAL SEARCH ALGORITHM

In this section, we present a technique to make the local
search algorithm (described in Section IV) execute faster. The
main idea is to use a hash-based data structure so that we can
reduce the time required to construct an attack.

First we compute the running time of a straightforward
implementation of the attack function A. We use R and T
to denote the number of robots and targets respectively. To
construct the attack, we make « greedy choices. At each
greedy iteration, we make R calls to the target coverage
function F. F can be computed in O(7") time by maintaining a
boolean array of size T that stores the coverage status of all
the targets. Thus a straightforward implementation of A takes
O(aRT) time.

Now we present how we can accelerate the process of
constructing an attack. We present the methodology for both
attack models A1l and A2 separately below. Here, S denotes
the feasible solution that is passed as input parameter to the
attack function A, and L, denotes the set of targets covered
by the trajectory .

o Attack model 1 (Al): In case of Al, at each greedy
iteration, the attacker selects the trajectory that maximizes
the increase in target coverage. In our implementation of
A1, we maintain a boolean array of size T', which stores,
for each target ¢, if ¢ is covered by at least one of the
trajectories greedily selected thus far. Using the array, we
determine the incremental coverage of a trajectory 7 in
O(|L,|) time.

o Attack model 2 (A2): In case of A2, at each greedy
iteration, the attacker selects the trajectory that covers the
maximum number of targets in U, where U is the set of
targets which are covered by exactly one of the remaining
trajectories. In our implementation of A2, for each target
t, we store the set of trajectories in S which cover t.
Let’s denote the collection of all such sets by X. We
implement U and the sets in X using hash-tables, which
permit find, insertion, and delete operations in constant
time.

In the implementation of A2, when we greedily select
a trajectory 7, we remove 7 from all sets in X which
include 7. If the size of any set in X reduces to one, we
update U accordingly. Using the hash-based implemen-
tation of U and X, we determine the number of targets
that are covered by exactly one trajectory after removal
of a trajectory 7 in O(|L,|) time.

In case of both attack models, using the above mentioned
data structures, we can make each greedy choice in time
O(Rt*), where t* denotes the maximum number of targets
covered by one trajectory. This makes the overall computation
time of the attack function O(aRt*). Thus, using the above
described acceleration technique, we achieve a performance
speedup of a factor of tZ over the straightforward algorithm,
which is O(T) if we assume that ¢* is a constant.

APPENDIX B
EXPERIMENTAL RESULTS FOR RANDOM DATASET

In this section, we present the experimental results for a
synthetic dataset that is generated in a different way than the
one mentioned in Section V. We call the new dataset random
dataset. To generate a random dataset, we consider 4 trajec-
tories for each robot. For each trajectory 7, we generate an
integer n uniformly within the range [5, 15], which indicates
the number of targets covered by 7. Then, from the set of
targets, we select n targets with uniform probability and assign
them to the trajectory 7.

Let’s call the dataset used in the experiments in Section V
geometric dataset. The random dataset is fundamentally dif-
ferent from the geometric dataset, because it does not have
any underlying geometric structure. Consequently, experimen-
tations using the random dataset demonstrate slightly different
outcomes in comparison with geometric dataset.

Now we present the results of empirical evaluation of our
proposed algorithms with random dataset. We conduct the
same set of experiments as in Section V using the same values
of the parameters. In Figure 7, we compare the accuracy
of our proposed algorithms with the 2PG algorithm. The
experimental results differ from the geometric dataset in two
ways. We observe that the accuracy of all OrG and LS variants



decreases with increase in attack size. Also, the average
standard deviation of the relative accuracy is significantly
lower in case of random dataset in comparison with geometric
dataset.

Accuracy wrt Brute Force Algorithm (R = 6, T = 60)
100 T

5
95 A —

2PG —A—
LS-A2-2 —O—
OrG-U-

0bG —H—

Accuracy (%)

2 L
2 3 4

Attack Size

Fig. 8. Comparison of accuracy of proposed algorithms with BF algorithm
for random dataset.

Accuracy for Non-optimal Attack (R = 100, T = 1000)
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Fig. 9. Comparison of accuracy with Non-optimal Attack Model for random
dataset.

Figure 8 shows the accuracy of our proposed algorithms in
comparison with the brute force algorithm. We observe that
the accuracy of the algorithms being compared is significantly
higher in case of random dataset than the geometric dataset.
But the order of the accuracy of the compared algorithms
is preserved across the datasets. Figure 9 shows that the ex-
perimental results with non-optimal attack model for random
dataset is similar to the results found using geometric dataset.

APPENDIX C
SENSITIVITY ANALYSIS

In the above experiments, we have assumed that the number
of robot failures equals the attack size, o. But in reality, the
two quantities will differ in most cases. For example, in a
practical deployment of 10 robots which assumes a maximum
attack size of 2 (i.e., & = 2), there may be no robot failure.
Hence, we present experimental results where the number of
robot failures differs from the attack size.

Sensitivity Analysis (R = 15, T = 150)
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Fig. 10. Sensitivity analysis for geometric dataset.

Sensitivity Analysis (R = 15, T = 150)
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Fig. 11. Sensitivity analysis for random dataset.

In this experiment, we consider a scenario with 15 robots,
150 targets, and attack size, « = 6. We vary the number
of robot failures (worst case failure) in increments of 2 and
report the relative accuracy of our proposed algorithms with
respect to the 2PG algorithm for both geometric (Figure 10)
and random (Figure 11) datasets.

The experimental results show that, for both datasets, the
accuracy of the proposed algorithms (OrG-U-I and LS-A2-12)
drops sharply if the number of robot failure exceeds «. If the
number of robot failures is within the attack size (i.e., less than
or equal to «), the proposed algorithms give better accuracy
than the 2PG algorithm.



