The Maximum Visibility Facility Selection Query in Spatial
Databases

Ishat E Rabban, 2Mohammed E. Ali, Muhammad A. Cheema, *Tanzima Hashem
L24BUET, Dhaka-1000, Bangladesh,>Monash University, Australia
L.2.4jeranik,eunus, tanzimahashem@cse.buet.ac.bd,? aamir.cheema@monash.edu

ABSTRACT

Given a set of obstacles in 2D or 3D space, a set of n candidate loca-
tions where facilities can be established, the Maximum Visibility
Facility Selection (MVFS) query finds k out of the n locations, that
yield the maximum visibility coverage of the data space. Though
the MVFS problem has been extensively studied in visual sensor net-
works, computational geometry, and computer vision in the form of
optimal camera placement problem, existing solutions are designed
for discretized space and only work for MVFS instances having a
few hundred facilities. In this paper, we revisit the MVFS problem
to support new spatial database applications like “where to place
security cameras to ensure better surveillance of a building complex?"
or “where to place billboards in the city to maximize visibility from
the surrounding space?". We introduce the concept of equivisibility
triangulation to devise the first approach to accurately determine
the visibility coverage of continuous data space from a subset of
the facility locations, which avoids the limitations of discretizing
the data space. Then, we propose an efficient graph-theoretic ap-
proach that exploits the idea of vertex separators for efficient exact
in-memory solution of the MVFS problem. Finally, we propose the
first external-memory based approximation algorithm (with a guar-
anteed approximation ratio of 1 — %) that is scalable for a large
number of obstacles and facility locations. We conduct extensive
experimental study to show the effectiveness and efficiency of our
proposed algorithms.

CCS CONCEPTS

« Information systems — Spatial-temporal systems;

KEYWORDS

Visibility, Maximum Coverage Problem, Triangulation, Graph Par-
titioning, Greedy Approximation

ACM Reference format:

Ishat E Rabban, 2Mohammed E. Ali, 3Muhammad A. Cheema, *Tanzima
Hashem. 2019. The Maximum Visibility Facility Selection Query in Spatial
Databases. In Proceedings of 27th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, Chicago, IL, USA, November
5-8, 2019 (SIGSPATIAL ’19), 10 pages.
https://doi.org/10.1145/3347146.3359091

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGSPATIAL 19, November 5-8, 2019, Chicago, IL, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6909-1/19/11...$15.00
https://doi.org/10.1145/3347146.3359091

1 INTRODUCTION

The 3D models of real-life urban structures such as buildings and in-
frastructures are becoming increasingly available through popular
mapping services such as Google Maps and OpenStreetMap. These
map based services also allow users to upload 3D models. Modern
mobile devices enable users to build the 3D models of indoor spaces
by a simple scan. The availability of 3D models of both outdoor and
indoor spaces enables us to address many practical applications
that require visibility computation in the presence of 3D obstacles.
For example, an advertisement company may need to find a set
of locations to build new billboards in a city to attract maximum
number of people. A security company may need to find a set of
locations to place cameras to ensure maximum surveillance of a
building complex. A fire security expert may want to determine the
locations of water sprinklers to be installed in a building to ensure
maximum coverage of the sprinkler system in case of fire.

To answer the above queries efficiently, in this paper we inves-
tigate the Maximum Visibility Facility Selection (MVFS) query in
spatial databases for optimal facility placement in the presence of
obstacles. Given a set of obstacles, a set D of n candidate locations
where new facilities can be placed, and the visibility range of the
facilities, the MVFS query finds k locations from D for placing new
facilities such that the combined visibility coverage is maximized.

The MVFS problem (also known as the Optimum Camera Place-
ment (OCP) problem [9] [10]) is an important visibility based opti-
mization problem, and has been studied extensively in visual sensor
networks, computational geometry, robotics, and vision. This prob-
lem is NP-hard and the existing exact solutions of this problem
rely on Binary Integer Programming (BIP) techniques. Commercial
MILP (Mixed Integer Linear Programming) solvers take thousands
of seconds to solve this problem with a maximum of 50 facility loca-
tions [10]. Since an exact solution of the MVFS problem is infeasible
for a practical large scale scenario, a number of works focus on
finding approximate solution using greedy algorithms and local
search techniques [19] [2] [13] [10].

Though many existing works address the MVEFS problem, they
suffer from the following limitations: (i) Most of the existing scal-
able solutions assume a discretized data space, i.e., the data-space
is sampled to form a set of control points, and the visibility cover-
age is measured in terms of the number of visible control points
instead of the actual area/volume of the visible region. (ii) Since the
existing exact solutions involve solving BIP formulations, and the
number of binary variables in this formulation is high, the perfor-
mance of these exact algorithms is not satisfactory even for small
instances. (iii) No existing approaches offer disk-based solution and
thus cannot handle the scenarios where the obstacle set is stored
in secondary memory (as is typically the case for many real world

https://doi.org/10.1145/3347146.3359091
https://doi.org/10.1145/3347146.3359091

SIGSPATIAL ’19, November 5-8, 2019, Chicago, IL, USAlIshat E Rabban, 2Mohammed E. Ali, 3Muhammad A. Cheema, *Tanzima Hashem

applications). Thus existing solution are not applicable in the con-
text of big data. (iv) The existing approximation algorithms do not
provide any theoretical bound on the approximation ratio.

In this paper, we revisit the MVFS problem in the context of big
spatial data and provide both in-memory and disk-based efficient
query solutions. In particular, we propose two exact in-memory
algorithms (BasicExact and EfficientExact), that do not require the
data-space to be discretized into control points. The key idea of our
approaches is to construct a novel visibility based triangulation of
the data-space, namely equivisibility triangulation, using which we
can accurately determine the area of the region visible from one
or more facility locations. Thus we achieve a continuous notion of
visibility, which is critical in applications where no spot in the data-
space can be left unattended, i.e., in a highly secured environment.

In our algorithms, we model the MVFS problem as a graph prob-
lem, and employ a divide-and-conquer strategy to obtain the op-
timum solution. We determine a vertex separator (a subset of the
vertices, removal of which along with the associated edges renders
the graph disconnected) of the graph, recursively solve the smaller
subgraphs split by the vertex separator, and finally merge the so-
lutions obtained from the subgraphs to form the overall solution
of the MVFS problem. Our proposed algorithm can solve larger
instances of the MVFS problem in comparison with the existing
exact solutions and thus overcomes limitations (i) and (ii) of the
existing MVFS solutions. To the best of our knowledge, our solution
is the first approach to solve MVFS problem in continuous data-space.

To handle a large number of obstacles, we propose the first
external-memory algorithm (ScalableGreedy), that addresses the
limitations (iii) and (iv) of the existing approaches. To attain scala-
bility, we apply a greedy approximate technique to reduce compu-
tational cost, use a disk-resident spatial data structure to accelerate
obstacle retrieval, and employ a heuristic driven best-first search
technique to reduce the I/O overhead. We prove that our approx-
imate greedy method has an approximation ratio of 1 — %. We
empirically show that the error induced by the greedy approxima-
tion is less than 0.1%, and hence can be safely ignored. In summary
we have made the following major contributions:

e We develop the first solution to the MVFS problem that does
not simplify the problem by discretizing the space into con-
trol points and instead works on the continuous data space.
We introduce a novel concept, namely equivisibility triangu-
lation, using which we accurately compute the area/volume
of the region visible from one or more facility locations.

e We develop an efficient divide-and-conquer algorithm (Effi-
cientExact) that outperforms the existing exact solutions.

e We propose the first disk-resident algorithm (a greedy ap-
proximation algorithm called ScalableGreedy) which can han-
dle very large datasets. Our proposed algorithm has theoreti-
cally proven approximation ratio and generates near optimal
results in practice.

e We conduct extensive set of experiments to show the effec-
tiveness and efficiency of our proposed algorithms.

2 LITERATURE REVIEW

The MVFS problem is a highly studied visibility based optimization
problem. This problem is a variant of the well-known Optimum

Camera Placement (OCP) problem. There are two major versions
of the OCP problem, namely, the set cover and the maximum k
coverage formulation. The MVFS problem is similar to the maximum
k coverage formulation. In both problems, a region of interest (ROI)
is provided that is to be observed by the visual sensors, i.e., cameras.
The ROI is represented discretely by a set of control points. We
are given a set D of n facility locations where a camera can be
placed, the viewing range, the field of view of the camera etc. In the
set cover version, we determine the minimum number of facility
locations from D to place cameras such that a complete visibility
coverage of the ROI is achieved. In the maximum k coverage version,
given an integer k, we select k locations from D to place cameras
such that the visual coverage of the ROI is maximized.

Both versions of the OCP problem discussed above are proved
to be NP-hard. The existing solutions to the OCP problem can be
categorized into exact algorithms and approximate solutions. The
exact solutions to the OCP problem are based on binary integer
programming (BIP) techniques [9] [10] [4] [3] [6] [12]. In the set
cover version, the number of binary variables in the BIP formulation
equals the number of facility locations. In the maximum k cover-
age version, the number of binary variables equals the sum of the
number of facility locations and the number of control points. Thus
finding the optimum solution of the maximum k coverage version
of the OCP problem is computationally more expensive than solv-
ing the set cover version. In earlier works, commercial MILP (Mixed
Integer Linear Programming) solvers were used to generate the opti-
mum solution of the BIP formulations [10] [12]. The largest instance
of the set cover version (maximum k coverage version, respectively)
that has been optimally solved consists of 164 facility locations [4]
(50 facility locations [10], respectively) and it takes thousands of
seconds to solve these instances. Thus, the performance of the ex-
act solutions of the OCP problem is poor even for small instances.
It is assumed in the literature that finding the exact solution of
the OCP problem is infeasible for a practical large scale scenario.
Consequently a number of works focus on finding approximate
solution of the OCP problem. The approximate techniques include
greedy algorithms and local search techniques [19] [2] [13] [10]. In
the greedy algorithms, choice of facility locations is made at each
iteration according to different greedy heuristics. In the local search
technique, an initial solution is constructed and it is incrementally
improved by jumping to a neighboring solution until it reaches a lo-
cal optima. Approximate solutions based on Al techniques are also
studied, which include evolutionary algorithm [18] [17], particle
swarm optimization [5], simulated annealing [7] etc.

3 PROBLEM FORMULATION

In this section, first we define some terminologies and then formally
state our MVFS query problem. For simplicity, we assume that each
facility has equal viewing range. The candidate locations where
facilities can be established are termed as data points. Two points in
the data-space are visible to each other if the line segment joining
the two points does not intersect any obstacles and the distance
between the two points is less than or equal to the visibility range
of a facility. Otherwise the two points are non-visible. The set of
all points visible from a data point defines the visible region of the
data point. We define the kMVFS and MVFS problems below.

The Maximum Visibility Facility Selection Query in Spatial Databases

Problem Definition: Let R™ be an m-dimensional data-space
(m=2 or 3), O be the set of obstacles in the data-space, D be the set
of n data points where facilities can be established, r be the viewing
range of a facility, and k be an integer where 0 < k < n. Then, the
kMVFS query finds Sg., the subset of D with k data points (S € D
and |Si| = k) that yields the visible region of maximum area (or
volume, in 3D). Here the notation |.| stands for the cardinality of a
set. The MVFS query finds Sj, for each 0 < I < n. Thus, the solution
of the MVFS problem is the ordered list [S1, Sz, . . ., Sn-1]-

Note that, for simplicity while computing the area of visible
regions, we consider the supremum distance metric. Under this
metric, a facility with visibility range r covers an axis aligned square
(in 2D) or cube (in 3D) of the data space with side length 2r centered
at the facility location. However, we remark that our techniques
can be applied on other distance metrics such as Euclidean distance.

Figure 1: An instance of kMVFS problem for k=3.

Figure 1 shows a 2D instance of the kMVFS query for k = 3. In
this example, there are 5 data points (dy to d4, cross marked), and
9 obstacles (09 to 0g). Under the supremum distance metric, the
viewing range of a facility is a square of side length 2r (shown as
dotted squares). The visible regions of each data point is shown
separately using bold boundaries. The three element subset of D
having visible region of maximum area is {dy,d2,ds}. The visible
region of {dy,d2,ds} is shown in light grey. Thus, {do,d2,ds} is the
solution of the kMVFS query where k = 3.

4 BASIC EXACT ALGORITHM

We first discuss some basic constructs for developing our in-memory
exact algorithm for continuous space (Section 4.1). Then we present
one of our key ideas of constructing visibility based triangulation,
which facilitates the computation of visible area from multiple data
points (Section 4.2). Based on our developed constructs, we present
the basic exact algorithm in details (Section 4.3).

4.1 Preliminaries

4.1.1 Visible Region of a Data Point. The problem of construct-
ing the visible region of a data point is a well studied problem in
computational geometry. We adopt the work of Asano [1] to con-
struct the visible region of a data point, which involves performing
rotational plane sweep around the query point.

The visible region of a data point is a simple polygon. For ex-
ample, in Figure 1, the shaded polygon on the right is the visible
region of dy. In this paper, we represent the visible region of a data
point by its triangulation, i.e., a set of triangles. Connecting the data
point with each pair of adjacent vertices of the visibility polygon
creates a triangulation of the visible region.

SIGSPATIAL *19, November 5-8, 2019, Chicago, IL, USA

If we use Euclidean distance metric instead of supremum dis-
tance, the visible region of a data point may contain circular patches.
In that case, we can construct arbitrarily close approximation of
such regions by increasing the number of triangles, as proposed in
existing literature [11].

4.1.2 Intersection Graph. To solve the MVFS problem, we use a
concept from graph theory, namely, the Intersection Graph, which is
denoted by G!. Given the set of data points, D, the set of obstacles, O,
and the viewing range of a facility, r, the intersection graph contains
nodes corresponding to the data points in D, and an undirected
edge between two nodes if the visible regions of the corresponding
data points overlap each other. In Figure 2, the visible regions of
the data points are shown in grey and the intersection graph of the
scenario is shown on the right. Here, the visible regions between the
data points dy, d1, and dy overlap each other, hence there are edges
between each pair of the corresponding nodes in the intersection
graph. Similar is the case between d3 and dj.

0
o = % .
4 el c @ @
dx
0 0 | @'
o) | 7] @
0 4 - @
0, 4 0,

Figure 2: Intersection graph of an MVFS instance.

We construct the intersection graph as follows. We construct the
visible region for all the data points in D. Then, for each pair of data
points (d;,d;) € D, we place an edge between the corresponding
nodes of d; and d; in the intersection graph if and only if there exists
a triangle t; € Vy;, and a triangle t; € V;;, and the intersection of
t; and t; is not null. The process of determining the intersection
between two triangles are described later in this section.

Note that, if two data points are located in separate connected
components in the intersection graph, their visible regions do not
overlap. This characteristics allows us to process the data points
pertaining to each connected component independently.

4.2 Constructing Equivisibility Triangulation
The equivisibility triangulation is a partitioning of the data-space
into disjoint triangles such that all points within a triangle are
visible from the same subset of data points in D. For each triangle ¢
in the partitioning, we store an additional piece of information (a
bitmap value), which indicates the subset of D from which all the
points inside ¢t are visible. We can calculate the exact area of the
region visible from any subset of D using the bitmap values. Thus
the equivisibility triangulation enables us to achieve a continuous
notion of the data-space unlike the previous approaches, which
involved discretizing the dataspace into control points.

Definition 4.1. Visibility Status: Given a set of n data points
D, and a set of obstacles O, the wvisibility status of a point p in the
data space is a bitmap of length n, where, for 0 < i < n, the ith
bit is 1 if p is visible from the i* h data point in D, and 0 otherwise.
If all points inside a triangle t have the same visibility status, the
visibility status of t equals the visibility status of a point inside t.

SIGSPATIAL ’19, November 5-8, 2019, Chicago, IL, USAlIshat E Rabban, 2Mohammed E. Ali, 3Muhammad A. Cheema, *Tanzima Hashem

Definition 4.2. Equivisibility Triangulation: Given a set of
data points D, and a set of obstacles O, the equivisibility triangu-
lation, T, is a partitioning of the visible region of D into disjoint
triangles, such that for each triangle t € T, all points inside ¢ have
the same visibility status.

To construct the equivisibility triangulation, we use two boolean
operation on triangles, namely, boolean intersection and boolean
subtraction. Given two triangles, t, and t}, the boolean intersection
operation on t, and t; returns the region common to both ¢, and
tp, which we denote by t, N t,. The boolean subtraction operation
on t, and tj returns the region of ¢, not inside ¢, which we denote
by tq/tp. In Figure 3, the white region is the boolean intersection
of tg and tp,. t4/ty, is shown in light grey and t;,/t, is shown in dark
grey. We represent the resultant regions by their triangulation.

ts ta

ty t

Figure 3: Boolean intersection and subtraction.

ta

We present the algorithm visTriangulation that constructs the
equivisibility triangulation of the data points pertaining to one
connected component. In this algorithm, the routine rangeQuery
is used to determine the subset of obstacles that intersect or fall
within the visibility range of a the data point. The visRegion routine
is used to determine the visible region of a data point in the form
of a set of triangles as discussed in Section 4.1.1.

The intersectRegion and subtractRegion routines take as in-
put two regions (A and B) and return their boolean intersection
and subtraction respectively. The input and output regions are rep-
resented by their triangulation. To implement the intersectRegion
routine, we iterate over all pair of triangles (t4,tg), where t4 € A
and tg € B, and we accumulate the triangulation of the boolean
intersection of all such (t4,tg) pairs in a list, which is returned at
termination. To implement the subtractRegion routine, we consider
each triangle of A, t4, and perform boolean subtraction of all trian-
gles of B from t4. As we keep subtracting triangles of B from ¢4,
t4 may get split into multiple triangles. We keep track of the split
triangles by maintaining a list, which is returned at termination.

In the algorithm visTriangulation, ¢; denotes the i’ h data point
in C, t.bitmap denotes the visibility status of triangle ¢, the <
operator denotes bitwise left shift, and subscripted L’s denote lists
of triangles. The data points in D are numbered from 0 to n — 1.
Now we describe the algorithm visTriangulation in details.

The algorithm visTriangulation constructs the equivisibility tri-
angulation of a connected component C incrementally, including
one data point at a time. Initially, in Lines 2-5, we construct the
equivisibility triangulation for the first data point of C. Then, in the
for loop spanning from Lines 6-18, we add one data point of C at
each iteration and incrementally reconstruct the equivisibility trian-
gulation. At the beginning of each iteration of the for loop, the list
L,14 holds the equivisibility triangulation of the first i data points of
C. In Lines 7-8, we construct the equivisibility triangulation for the
(i+1)%! data point of C and put it in the list Lye1y. In Lines 9-11, we
create three lists of triangles Lyjq7, Lpew’, and Linzer. Here, Lojgr

contains the triangulation of the region obtained from subtraction
of region Lyeqy from L4, ie., Lyjg is the region visible from one
or more of the first i data points of C, but not from the (i + 1)5¢
data point of C. Similarly, L., represents the region visible from
the (i + 1)*? data point of C, but visible from no data point of the
first i data points in C. Lj, e, represents the region visible from the
(i + 1)S* data point of C and one or more data points from the first
i data points of C. Note that, L,;4/, Lnew’, and Lipzer collectively
represent the region visible from one or more data points of the first
i + 1 data points of C. Finally we determine the bitmap values for
the triangles in these three lists and combine the lists to construct
the updated L,;4, which represent the equivisibility triangulation
of the first i + 1 data points in C (Lines 12-18).

Algorithm 1: visTriangulation(O,C,r)

input :0,C,r
output:Equivisibility triangulation of data points in C
1 begin

2 Orq «— rangeQuery(c, O, r)

3 Lojq «— visRegion(c, Org, 1)

4 for each triangle t in L,;4 do

5 L t.bitmap — (1 < ¢)

6 fori «— 1toC.size()—1do

7 Orq «— rangeQuery(c;, O, r)

8 Lypew «— visRegion(c;, Org, 1)

9 Lojqr «— subtractRegion(Loig, Lnew)
10 Lyew «— subtractRegion(Lpew, Lojg)
1 Linter «— intersectRegion(Lorg, Lnew)
12 for each triangle t in L, ¢, do

13 t.bitmap «— (1 < ¢;)

14 L Lo -insert(t)

15 for each triangle t in Lipter do

16 t.bitmap «— t.bitmap|(1 < c;)

17 L Lojgr-insert(t)

18 L Lold — Lold’

19 | return L,y

Figure 4 shows the construction of equivisibility triangulation for
the first connected component of the scenario depicted in Figure 2.
Initially the equivisibility triangulation holds the triangulation of
the visible region of dy (Figure 4(a)). In the next two iteration, data
points dq and d; are added and the equivisibility triangulation is
constructed incrementally as shown in Figure 4(b) and Figure 4(c).

o 0
5 5 :

0o %
0, R 0, o

(b) (c)

Figure 4: Constructing equivisibility triangulation.

To handle 3D MVFS instances, we modify our methodology as
follows. To represent the visible region of a data point in 3D space,
we use a set of tetrahedrons, instead of triangles. Tetrahedrons are

The Maximum Visibility Facility Selection Query in Spatial Databases

the building block of the visible region in a continuous 3D scene.
The set of tetrahedrons representing the visible region of a data
point is determined by performing plane sweep along principal axes.
To form a partition of the space using tetrahedrons, we implement
the boolean intersection and subtraction of tetrahedrons, and use
an incremental algorithm similar to the visTriangulation.

Reduced List: After constructing the equivisibility triangula-
tion, we employ an acceleration technique, in which, we reduce
the equivisibility triangulation into a list of elements. Reducing the
triangulation creates a compact representation of the triangulation
without losing necessary information, which helps accelerate the
subsequent algorithms. The reduce routine is described below.

In the equivisibility triangulation of a component, the number
of unique bitmap values is significantly less than the number of
triangles. For example, in Figure 4(c), there are 68 triangles but only
7 distinct bitmap values. Consequently, in the reduce routine, for
each unique bitmap value, we create one element. Each element has
a key (bitmap) and a value (area). The value of an element with
key b equals the sum of areas of all triangles in the equivisibility
triangulation having the bitmap value of b. By using reduce, we
obtain a smaller list of elements, which we call the reduced list and
denote by L. For the example depicted in Figure 4(c), there are 7
elements in the reduced list, because there are 7 distinct bitmap
values (001 to 111). The reduced list is used to calculate the area
visible from a subset of data points. Instead of searching all triangles
in the triangulation, we traverse a smaller reduced list.

4.3 The Basic Exact Algorithm

In this section, first we describe how to solve the MVFS instance for
each component independently (Section 4.3.1). Then, we discuss the
process of merging the results obtained from different components
(Section 4.3.2). Finally, we provide the pseudocode of the basic exact
algorithm (Section 4.3.3).

4.3.1 Solving MVFS for a Component. We use the routine basic-
SolveComponent to solve the MVFS problem for a set of data points
pertaining to one connected component. This routine takes as input
a connected component, C, and the reduced list for the data points
of C, LR The solution vector of the MVFS instance is an ordered
list, which we denote by X. The process of generating X from C
and LR is called solving the component C.

The entries of X are (bitmap,area) pairs. Each bitmap has a length
of n, which represents a subset of C (or, equivalently, D). The i*"
entry of X, which we denote by X[i], stores the (bitmap,area) pair
corresponding to the solution of the kMVFS problem with k = i. To
determine X[i], we consider all possible subsets of C where i bits
are set. For each such subset S, we determine the visible area of the
data points in S by adding up the area of the appropriate elements
from the reduced list, LR , and select the subset with highest area.
We repeat the procedure for each i, where 0 < i < n, to populate
the solution vector X.

4.3.2 Merging Results of Multiple Components. The routine
mergeComponents employs an incremental approach to merge the
solution of multiple components and form the overall solution. The
overall solution vector is X*, which initially contains the solution of
the first component. We update X™* by incorporating the solutions
of the rest of the components iteratively as follows.

SIGSPATIAL *19, November 5-8, 2019, Chicago, IL, USA

Let, the set of all components be {Cy, C1,C2, . ..,Cp}. Each com-
ponent C;, 0 < i < m, contains the set of data points in the jth
component. The solution vector of component C; is denoted by X,
which can be computed using the basicSolveComponent routine. At
the beginning of the mergeComponents routine, X* is set to Xy. On
the i" iteration, the result of the (i +1)$¢ component, X;, is merged
with the result of the first i components, which is available in X*.
The merging process at each iteration is as follows. We consider all
possible index values of X*, from 0 to X™.size() + X; .size(). For each
index, k, we consider all possible choices (j data points selected
from the first i components, whose result is stored at X*[j], and
k — j data points selected from the (i + 1)*! component, whose
result is stored at X;[k — j]; j ranges from 0 to min(X*.size(), k))
and determine the optimum choice. After the mth iteration, we
return X* as the optimum solution.

4.3.3 The Algorithm. In the basic exact algorithm, first we di-
vide the data points of D into a set of connected components, C,
using the routine connectedComponents (Line 2). This routine takes
a set of data points, a set of obstacles, and the visibility range as
input parameters and returns the set of connected components. The
routine determines the connected components by first constructing
the intersection graph G! and then performing Depth First Search
(DFS) on G!. Next, for each component ¢, we construct the equivis-
ibility triangulation, T (Line 4), reduce T to obtain the reduced list,
LR (Line 5), and use the basicSolveComponent routine to obtain the
solution of the MVFS problem for ¢ (Line 6). The solutions of all the
components is accumulated in a 2D data structure, U (Line 1, 6).
Finally we merge the results of all components using the algorithm
mergeComponents to solve the MVFS problem (Line 7).

We solve the kMVFS problem by making the following modifi-
cation to the above solution. In basicSolveComponent, instead of
considering all possible subsets, we consider only the subsets of
size less than or equal to k, and in the routine mergeComponents,
we return X[k] instead of X. In the basic exact algorithm, the time

Algorithm 2: BasicExact(O,D,r)

input :0,D,r
output: Output of the MVFS Problem
1 begin
2 U «— 0, C «— connectedComponents(O, D, r)
3 for each connected component ¢ € C do
4 T «— visTriangulation(O, c, r)
5 LR« reduce(T)
6 U.insert(basicSolveComponent(c, LRYy)
7 return mergeComponents(U)

complexity of the routines visTriangulation and reduce is exponen-
tial on the size of the component, because for a component ¢, up to
2¢-s1z€0) distinct bitmap values may arise from equivisibility trian-
gulation. The time complexity of the routine basicSolveComponent
is also exponential on the component size, because for a component
¢, we consider all 2¢-512¢0 subsets of ¢ to find the optimum solution.

According to the above discussion, the performance of the basic
exact algorithm is dependent on the size of the largest connected
component, instead of the total number of data points n. Thus by
treating the connected components independently, we achieve a
significant performance speedup.

SIGSPATIAL ’19, November 5-8, 2019, Chicago, IL, USAlIshat E Rabban, 2Mohammed E. Ali, 3Muhammad A. Cheema, *Tanzima Hashem

5 EFFICIENT EXACT ALGORITHM

The performance of the basic exact algorithm described in the
previous section depends exponentially on the cardinality of the
largest component, and consequently degrades rapidly when the
cardinality of the largest component increases. In this section, we
propose an improved methodology, the efficient exact algorithm,
which solves a component faster by using vertex separators.

5.1 The Key Insight: Vertex Separator

The key insight of our approach to solve a component faster is
based on the idea of vertex separators. A vertex separator of a
connected graph G is a set of vertices S, S € V(G), such that the
deletion of S from G renders G disconnected. Here, V(G) denotes
the set of vertices of the graph G. To solve a component faster, first
we determine a vertex separator of the component and branch on
the vertices of the vertex separator. If the cardinality of the vertex
separator is k, we create 2 branches, one branch for each selection
choice of the vertices in the vertex separator. A vertex in the vertex
separator can either be selected or be rejected and thus 2* branches
are created. The vertex separator splits the graph into two or more
smaller connected components, which we call inner components.
For each branch, we solve the inner components and merge the
results of the inner components to form the overall solution.

Figure 5: Splitting a component by a separator.

Figure 5 illustrates the above idea. Here the connected compo-
nent shown in the left has 12 vertices. In the basic exact algorithm,
solving this component requires calculating visible regions for 4096
(=2'2) subsets. But we can use the idea described above to avoid
considering all 4096 subsets. First we determine a vertex separator,
which consists of two vertices, d; and dz, as shown in the right
of Figure 5. Thus the value of k is 2. The graph is split into two
inner components, ¢; and ¢z, both having 5 vertices. We create 4
(= 2%) branches, one for each selection choice of d; and dy. Then,
for each branch, we solve c¢; and ¢, separately by considering all
possible subsets (2 subsets for each of ¢; and c2) within each inner
component. In total, we consider 256 (= 22 * (25 + 2%)) subsets.
Thus we reduce the number of subsets to be considered and achieve
performance speedup over the basic exact algorithm.

In the above method, the number of subsets we consider while
solving a component depends exponentially on the sum of the
cardinality of the vertex separator and the cardinality of the largest
inner component. We name this sum as the critical number of a
component. According to the idea developed above, the running
time of solving a component depends exponentially on the critical
number of the component. Thus a vertex separator leads to better
performance if the separator has a small size and the size of the
largest inner component split by the separator is as small as possible.
The problem of finding a vertex separator of small size that splits

a graph into inner components of roughly equal size has been
extensively studied in literature [15] [16]. We adopt an idea based
on articulation points [16] to find the vertex separator.

5.2 The Efficient Exact Algorithm

In the improved algorithm, we use the idea of vertex separators,
outlined in Section 5.1, to provide faster methods for solving a
component (Section 5.2.1) and constructing the equivisibility trian-
gulation of a component (Section 5.2.2). We obtain the improved
solution for the MVFS problem, the algorithm EfficientExact, by
replacing the methods for constructing equivisibility triangulation
and solving a component in the basic exact algorithm (Line 4 and 6
of algorithm BasicExact) with the procedures mentioned below.

5.2.1 Solving a Component. In the improved algorithm, to solve
a component faster, we consider each subset, S’, of the vertex sep-
arator, S, independently. For each such subset S’, we remove the
visible region of S’ from the reduced list, we solve all the inner
components, merge the solution of the inner components, and re-
include the vertices of §” into the merged solution. Finally, for each
cardinality, we return the choice having the maximum area over
all subsets of S. Here the setBits routine returns a bitmap of length
n representing the input subset S of data points. The countSetBits
routine returns the number of set bits in the input bitmap b.

First, a list of (bitmap,area) pairs, X, which would hold the so-
lution of the component, is initialized (Line 2). We determine the
vertex separator, S, for the connected component C (Line 3) and
determine the set of inner components, I, obtained by splitting C
by the vertex separator S (Line 4). The routine split is implemented
using the DFS algorithm. We consider each subset of the vertices in
S (Line 5). Similar to the basic algorithm, a subset of the vertices in S
is represented by the bitmap, bitmapS (Line 6). For each such subset,
S’, we construct a reduced list of elements, tmpL. To obtain tmpL,
we remove from LR the elements containing one or more vertices
of §’ (Lines 7-8) using remove. The remove method updates the list
of elements provided in the first parameter (¢tmpL) by removing
from the list the elements having set bits in the bitmap provided
in the second parameter (bitmapS) and returns the sum of the area
of the removed elements. Next, we solve all the inner components
separately and merge the results of all the inner components to
form W (Lines 9-12). For each subset S’, W holds the solution that
excludes the vertices of S’. Hence we include the vertices of §’ by
considering the number of vertices of S” (I) and the area covered by
the vertices of S” (initArea) and update X accordingly (Lines 13-17).

5.2.2 Constructing the Triangulation. We outline below an im-
proved procedure to construct the equivisibility triangulation of a
component using the idea of vertex separator. We do not describe
the procedure in details for brevity. Instead, we enumerate the key
steps of the procedure below. We also thematically illustrate the
process using Venn diagram as shown in Figure 6.

o First we find the vertex separator of the component C and
the inner components split by the vertex separator. Let S be
the set of data points in the vertex separator of C, S* be the
set of data points in C that are not in S, and I be the set of
inner components. In Figure 6, I = {I, b}, and S* = [; U I,.
The visible region of S is oval shaped, and the visible regions
of I; and I, are circular.

The Maximum Visibility Facility Selection Query in Spatial Databases

Algorithm 3: improvedSolveComponent(C,L¥)

input :C,LR
output:Solution of MVFS instance for component C
1 begin
2 X.init(C.size() + 1, —1.0)
3 S «— findSeparator(C)
4 I — split(C, S)
5 for each subset S’ of S do
6 bitmapS «— setBits(S’)
7 tmpL «— LR
8 initArea «— remove(tmpL, bitmapS)
9 U«—20
10 for each component ¢ € I do
1 L U.insert(basicSolveComponent(c, tmpL))
12 W «— mergeComponents(U)
13 I «— countSetBits(bitmapS)
14 for j «— 0to W.size()—1do
15 if X[I + jl.area < W[jl.area + initArea then
16 X[l + jl.area «— W]|j]l.area + initArea
17 L X[l +jl.bitmap «— W{[jl.bitmap|bitmapS
18 | return X

o Next we construct triangulation for the region of the data
space visible from one or more data points in S, but visible
from no data point in S*. Let this triangulation be denoted
by T. We construct T by using the routine subtractRegion. In
Figure 6, T corresponds to the dark grey region.

e Then we construct equivisibility triangulation of all inner
components in I separately using the algorithm visTriangu-
lation. We denote the triangulation by T*. In Figure 6, T*
corresponds to the circles I; and I.

e Note that, the triangles in T* that are visible from one or
more data point in S (the white overlapping region in Fig-
ure 6) have incorrect bitmap value, because their visibility
from S will not be reflected in their bitmaps. We correct
such bitmap values by finding the triangles in T* that fall
within the visible region of one or more data points in S and
updating their bitmaps accordingly. Thus, the equivisibility
triangulation of Cis T U T™.

Figure 6: Constructing equivisibility triangulation using ver-
tex separator.

The performance of the efficient exact algorithm depends on the
maximum critical number among the components of the intersec-
tion graph. The efficient exact algorithm empirically performs far
better than the basic version as shown in the experimental section.
Because, for a randomly built graph, the largest component size is
usually much bigger than the maximum critical number.

SIGSPATIAL *19, November 5-8, 2019, Chicago, IL, USA

5.3 Baseline Method

The existing solutions of the MVFS problem use Binary Integer Pro-
gramming (BIP) technique to find the exact solution. BIP technique
is a special class of linear programming. Linear programming is
a method to solve an optimization problem, where the problem
is formulated as a mathematical model, the goal of the problem
(which is to maximize/minimize something) is represented as a
linear objective function, and the requirements of the problem are
represented using linear equality of inequality constraints. BIP
is a sub-class of linear programming, where the variables (to be
determined) are restricted to assume only binary values (0 or 1).
After constructing the equivisibility triangulation and finding the
reduced list, we can solve the kMVFS problem using BIP techniques.
The BIP formulation of the kMVFS can be constructed as follows.

In the reduced list, each element corresponds to the region visible
from a unique subset of the data points. The bitmap of an element
represents the subset of data points from which the region is visible.
The area of each element represents the area of the corresponding
region. Let, for 0 < i < n, S; denote the set of elements of the
reduced list, whose ith bit is set. In other words, S; contains the
elements/regions visible from the ith data point, d;. In the BIP
formulation, for each data point, we create a binary variable x;
to indicate whether or not the i‘" data point is in the optimum
selection of k data points. Also for each element e in the reduced
list, we declare a binary variable y, to indicate whether or not the
element e is covered by any of the k selected data points.

To enforce that no more than k data points are selected, we add
the following constraint: }}y<; <, x; < k. To ensure that an element
e is covered if and only if at least one of the data points from which
e is visible is selected, we include the following constraint for each
element e in the reduced list: 3. cg, xi > ye. Note that if ye > 0, at
least one data point from which e is visible must be selected. Our
goal is to maximize the sum of the areas of the covered elements,
hence the objective function is: 3,1 r Ye * e.area.

In the baseline method, we first construct the equivisibility tri-
angulation, then find the reduced list, and finally use a commercial
MILP solver, Gurobi, to solve the above mentioned BIP formulation.

6 SCALABLE ALGORITHM

The exact algorithms proposed in Section 4 and 5 are not scal-
able because they have exponential time complexity and they can
not handle large disk-resident datasets. In this section, we present
an algorithm that achieves scalability by employing a greedy ap-
proximation technique (Section 6.1), and using a heuristic-driven
algorithm to guide the greedy search (Section 6.2).

6.1 The Greedy Approximation Technique

In this section, we outline a polynomial-time greedy approximation
algorithm for the MVFS problem and prove that it’s approximation
ratiois 1 — % We obtain such results by reducing the kMVFS prob-
lem to the well known Weighted Maximum k Coverage (WMkC)
problem. The formulation of the WMkC problem is given below.

The Weighted Maximum k Coverage Problem: An integer
k and a collection of n sets S=Sp, Si, ...Sp—1 are given. Each ground
element of the sets has an associated weight. The objective is to
find a subset S” C S, such that |S’| < k and sum of the weights of
the elements covered by S’ is maximized.

SIGSPATIAL ’19, November 5-8, 2019, Chicago, IL, USAlIshat E Rabban, 2Mohammed E. Ali, 3Muhammad A. Cheema, *Tanzima Hashem

The WMkKC problem is known to be NP-hard. The best known
approximation algorithm for the WMkC problem is a greedy algo-
rithm that at each step chooses the set that maximizes the sum of
the weights of the uncovered elements. This greedy algorithm has
been proved as the best-possible polynomial time approximation
algorithm for the WMkC problem and has an approximation ratio
of 1— 1 [8] [14].

The process of reducing the kMVFS problem to the WMkC prob-
lem is as follows. Consider an instance of the kMVFS problem. All
the triangles/elements in the equivisibility triangulation/reduced
list is the set of ground elements. The weight of each triangle/element
is its area. The sets of triangles/elements visible from the n data
points are denoted by Sy, S1, ...Sn—1. The objective is to maximize
the weighted coverage of k sets selected from the n sets. Thus the
kMVFS problem can be reduced to the WMkC problem.

A greedy approach for the kMVFS problem, similar to the one
for the WMkC problem, is to choose, at each step, the data point
that covers the highest non-visible area. According to the above
reduction, this greedy approach for the kMVFS problem has an
approximation ratio of 1 — %

6.2 The Scalable Algorithm

In the scalable algorithm, we partition the data space homoge-
neously into equal sized cells as in a grid. We use a matrix data
structure to store the visibility status of the cells. A cell ¢ is consid-
ered as covered if ¢ is situated completely inside any obstacle or c is
completely visible from any greedily chosen data point; otherwise, ¢
is considered as non-covered. In the greedy algorithm, we iteratively
make k greedy choices. At each iteration, we select the data point
that maximizes the number of cells that turns from non-covered to
covered. We index the obstacles in an R-tree to quickly retrieve the
obstacles located within the viewing range of a data point.

To make a greedy choice, instead of expanding all the data points
at random, we use a heuristic to establish an order, according to
which the data points are expanded. The heuristic value of a data
point is the number of non-covered cells within its viewing range.

In the scalable algorithm, we maintain a max priority queue
for the data points where the key of a data point is its heuristic
value. Initially all the data points are marked as OPEN. We retrieve
data points from the queue according to the heuristic value. If the
retrieved data point is marked OPEN, we calculate the number of
cells that turns covered from non-covered if a camera is placed at
the data point, mark the data point CLOSED, and insert the data
point back into the queue. Otherwise, if the retrieved data point is
marked CLOSED, we select the data point as the kth greedy choice
and update the heuristic values of nearby data points.

Note that, the heuristic value of a data point provides an upper
bound on the visibility of the data points, and consequently allows
us to make k greedy choices without necessarily expanding all the
data points. We do not present the algorithm in details for brevity.

7 EXPERIMENTAL EVALUATION

Our experiments are based on real (Boston Dataset!) and synthetic
2D obstacle datasets. To construct synthetic obstacle dataset, we
generated obstacles of varying size uniformly all over the extent

http://www.bostonplans.org/3d-data-maps

of the data-space. The obstacles are non-overlapping axis aligned
2D rectangles. The set of data points is synthetic and generated
uniformly such that the data points do not lie inside any obsta-
cle. The algorithms are implemented in C++ and the experiments
are conducted on a core i7 3.40 GHz PC with 8GB RAM, running
Microsoft Windows 10.

We evaluate the efficiency and effectiveness of our algorithms
by varying the following parameters: (i) the number of obstacles,
(ii) the number of data points, (iii) visibility range, and (iv) type of
dataset. To evaluate the performance of the exact algorithms, we
use total execution time as the metric. In case of the scalable greedy
algorithm, the evaluation metric are total execution time, IO time,
approximation error, and the number of range queries issued. For
each experiment, we generate 20 random input instances with the
same parameter setting and report the average performance.

7.1 Evaluation of Exact Algorithms

Table 1: Parameters for Exact Algorithms

Parameter Range Default
Number of Obstacles (K) 25, 50, 75, 100 50K
Number of Data Points 8, 16, 32, 64 32
Visibility Range 10, 15, 20, 25 20
Dataset Synthetic, Real Synthetic
Data-Space Size 1000*1000

The ranges and default values of the parameters for the exact
algorithms are listed in Table 1. The experimental results, presented
in Figure 7, show that the execution time of the exact algorithms
do not vary much with the size of the obstacle set (Figure 7(a)).
The execution time increases when the visibility range of a facility
increases. Because increase in visibility range causes more overlap
between the visible regions of the data points, and consequently
increases the largest component size and maximum critical num-
ber (Figure 7(b)). The execution time increases when n increases.
Because increase in the number of data points increases the largest
component size and maximum critical number (Figure 7(c)). To
evaluate the performance of the exact algorithms with real dataset
and compare the results with synthetic datasets, we conducted
experiments using the Boston dataset, which contains 11,437 obsta-
cles. We compared the results with a synthetic dataset containing
the same number of obstacle, as shown in Figure 7(d). The results
shows no significant difference between the running time of the
exact algorithms for real and synthetic datasets. Consequently, the
rest of the experimental results shown in this section are based on
synthetic datasets.

All the experimental results show that the efficient exact algo-
rithm runs orders of magnitude faster than the basic exact algorithm.
Because, in the intersection graph of an MVFS instance, the maxi-
mum critical number is usually significantly lower than the largest
component size, as described in the next section.

7.2 Comparison with Existing Solutions

In this section we introduce a new parameter, the edge density of
the intersection graph and use it as a parameter to compare the
performance of the exact algorithms.

The Maximum Visibility Facility Selection Query in Spatial Databases

100 100

T T T T
Efficient Exact —x— Efficient Exact —x—
o Basic Exact —&— S Basic Exact —&—
e N S r
o 4 o
£ £
=50 - - =50 -
< <
8 8
3 3 4
o o
> >
M m w /x/%
31
0 I I ol I I
25 50 75 100 10 15 20 25

Number of Obstacles (K)
(@) (b)
250

Visibility Range

IN)
a
S

T T T
Efficient Exact —%— A Efficient X Syn —%—

S 200 - Basic Exact —&— Al S 200 - Basic X Syn —A— o
3 3 Efficient X Real —5—
g 150 L | g 150 L Basic X Real |
= =
c c
S 100 |- 7 S 100 |- / 7
3 3
X %
5 50 5 50)]
0 0
8 16 32 64 8 16 32 64

Number of Data Points Number of Data Points

(© (d)

Figure 7: Comparison of the exact algorithms.

7.2.1 Edge Density as a Parameter. The performance of the ex-
act algorithms depends on the structure of the intersection graph,
i.e, largest component size in case of the basic exact algorithm (Sec-
tion 4.3), and maximum critical number in case of the efficient exact
algorithm (Section 5.2.2). To compare the performance of the exact
algorithms, we use a parameter that is positively correlated with
the largest component size and maximum critical number, namely,
the edge density of the intersection graph. In a graph with v nodes
and e edges, the edge density is the average degree of a node, i.e., %e.
The positive correlation of largest component size and maximum
critical number with edge density is demonstrated in Figure 8(a),
which also shows that the first quantity is significantly larger than
the later. In this experiment, we generate MVFS instances with 64
data points with edge density values between 2.0 to 5.0. For each
of the following ranges of edge density values, [2.0-2.5], [2.5-3.0],
..., and [4.5-5.0], we plot the average of the largest component size
and the maximum critical number.

80 1000

T T T T T
Efficient Exact —%—
Basic Exact —A&—

T T T T T
aximum critical number —x—

largest component size —4&— -
60 g 2 750 g
o
€ £
3 40 g = 500 g
(&} 2
_x H
20 - ¥ = e 250 =
%%* i
[
1 1 1 1 1 0
2 25 3 35 4 45 5 2 25 3 35 4 45 5

Edge Density of Intersection Graph

(a) (b)

Edge Density of Intersection Graph

Figure 8: Edge density as a parameter.

The edge density of the intersection graph incorporates the level
of overlap between the visible regions of the data points. An MVFS
instance with edge density x corresponds to a scenario where the
visible region of one data point overlaps with the visible regions of
x other data points on average. Figure 8(b) shows that the efficient
exact algorithm significantly outperforms the basic exact version.

SIGSPATIAL *19, November 5-8, 2019, Chicago, IL, USA

7.2.2 Comparison with Existing Exact Solutions. We present the
effect of the number of data points on the total processing time
of the efficient exact algorithm in Figure 9(a). In this experiment,
for each n, we generate random instances of the MVFS problem,
and plot the average total processing time of the efficient exact
algorithm against the edge density ranges. Note that, the total
processing time increases with increasing n. Because as the number
of nodes in a graph increases, the size of the largest component, and
consequently the maximum critical number increases. The exact
algorithms proposed in literature [10] could solve MVFS instances
with at most 50 data points. The efficient exact algorithm proposed
in this paper can solve MVFS instances with 256 data points and
edge density value of 4.75 within 500 seconds on average.

500

T T 1800 T T
n=16 —%— “ n=16 —x—
n=32 —6— 9 n=32 —6—
g 400 - gq] @ n=64
e n=128 & 1200 [n=128 i
g 300 g > n=256 —A—
E §
5 5
£ 200 i b=
3 o600 e
2 2
100 B €
E
ol oo o Lo 88
2 25 3 35 4 45 5 2 25 3 35 4 45 5

Edge Density of Intersection Graph

(a) (b)

Edge Density of Intersection Graph

Figure 9: (a) Performance of efficient exact algorithm. (b)
Comparison with baseline method.

The earlier exact solutions formulated the MVFS problem as a
binary integer program (BIP) and used commercial linear program
solvers to find the optimum solution of the (BIP). The number of
binary variables in the BIP form of the MVFS problem equals the
sum of the number of control points (i.e., the size of the reduced list
in our formulation) and the number of data points. We denote the
number of binary variables in the BIP formulation by b. We conduct
an experiment, where we use a state-of-the-art MILP solver, Gurobi,
to solve the BIP formulation of the MVFS problem. The solver was
able to generate the optimum solution when b < 530, but failed to
generate any solution for b > 530.

Figure 9(b) shows the results of an experiment, where for each
n, we generate input instances, and plot the number of binary
variables in the BIP formulation against the edge density ranges.
The graph shows that MVFS instances having 128 data points and
edge density over 3.0, or having 256 data points have more than 530
binary variables, and hence can not be solved by the state-of-the-art
LP solvers. But, using the efficient exact algorithm, we solved MVFS
instances with b > 1000 within approximately 500 seconds. Thus
our solution outperforms the earlier exact approaches.

7.3 Evaluation of Greedy Algorithm

To assess the performance of the scalable greedy algorithm, we
index the obstacles in an R-tree, with disk page size fixed at 1KB. We
report the total time and I/O time to compare the computational and
the I/O cost. The number of obstacles, number of data points, and
the data-space size are set to 50K, 256, and 1000010000 respectively
by default. The default value of k is set to n.

7.3.1 Approximation Error. In the ScalableGreedy algorithm, we
achieve scalability by employing a greedy approximation technique.
The greedy approximation algorithm has a theoretically proven

SIGSPATIAL ’19, November 5-8, 2019, Chicago, IL, USAlIshat E Rabban, 2Mohammed E. Ali, 3Muhammad A. Cheema, *Tanzima Hashem

approximation ratio of 1 — % But in our experiments, the aver-
age approximation error was found to be less than 0.1%. Thus we
conclude that the greedy approximation algorithm generates near
optimal solution of the MVFS problem.

7.3.2 Comparison of Exact and Greedy Algorithms. In this sec-
tion, we compare the performance of the EfficientExact and Scal-
ableGreedy algorithms by varying the number of data points (n)
between 16 to 256. For each value of n, we generate 20 random MVFS
instances having edge density value between 3 to 4, and report the
average total execution time. We found that the scalable algorithm
runs almost 15 times faster than the efficient exact algorithm.

7.3.3 Effect of Number of Obstacles and Data Points. Figure 10
shows the effect of the number of obstacles (a) and number of data
points (b) on total processing time and I/O time of the scalable
greedy algorithm. In the first experiment, we vary the number of
obstacles from 25K to 100K, with 25K increments. The results show
that the total processing time increases with increasing number of
obstacles. As the number of obstacles increases, the processing time
of a range query increases. Consequently the I/O time increases.
The figure demonstrates that the total processing time is dominated
by the I/O time. The computational cost does not vary much with
increase in number of obstacles.

75

T T T
total processing time —A—
10 time —&— 4

T T
total processing time —A—
20 L 10 time —=—_|

Time (sec)
Time (sec)

25 50 75 100 32 64 128 256 512 1024

Number of Obstacles (K) Number of Data Points

(a) (b)

Figure 10: Performance of scalable algorithm.

In the second experiment, the number of data points are varied
from 32 to 1024. The results show that the total processing time
increases with increasing number of data points. As n increases,
so does the number of greedy iterations. Consequently the com-
putational cost increases. With increasing n, the number of range
queries increases, which explains the increase in I/O time.

7.3.4 Effect of k. In this experiment, which is summarized in
Table 2, we set n to 256, vary k exponentially from 1 to 256, and
report the number of range queries issued by the scalable greedy
algorithm, I/O time, and total processing time in seconds. The num-
ber of range queries increases with k and reaches a maximum of 256,
because the greedy algorithm uses a heuristic to avoid issuing range
query for all the data points for small values of k. Consequently,
the I/O time and total processing time increases with increasing k.

Table 2: Effect of k

k 1 2 4 8 16 32 64 128 | 256
#RQ 17 31 65 154 | 243 | 255 | 256 | 256 | 256
IO time 0.25| 0.44 | 1.12 | 2.65 | 4.32 | 4.56 | 4.57 | 4.57 | 4.59
Total time | 2.91 | 3.51 | 6.08 | 11.8 | 16.9 | 18.0 | 18.3 | 18.4 | 184

8 CONCLUSION

We have developed a novel triangulation based technique to solve
the MVFS problem in a continuous data-space, unlike all previous
solutions which worked for discrete settings only. We have pro-
posed an exact algorithm (EfficientExact) for the MVFS problem
based on graph theory, which has outperformed the existing exact
approaches. We have formulated the first scalable solution (Scal-
ableGreedy) for the MVFS problem with guaranteed approximation
ratio, which can handle large disk-resident obstacle sets.

Our proposed exact algorithm is able to solve larger instances of
the MVFS problem in comparison with the existing exact methods.
Previous exact solutions could solve MVFS instances having at most
530 binary variables, while our method can solve instances having
more than 1000 binary variables. Our proposed scalable solution
runs orders of magnitude faster than our exact algorithm. In future,
we hope to develop novel algorithms to solve the set cover version
of the OCP problem in a continuous data-space.

REFERENCES

[1] T. Asano. An efficient algorithm for finding the visibility polygon for a polygonal
region with holes. IEICE Transactions, 68(9):557-559, 1985.

[2] W. Cheng, S. Li, X. Liao, S. Changxiang, and H. Chen. Maximal coverage sched-
uling in randomly deployed directional sensor networks. In Parallel Processing
Workshops, 2007. ICPPW 2007. International Conference on, pages 68—68. IEEE,
2007.

[3] B. Debaque, R. Jedidi, and D. Prevost. Optimal video camera network deploy-
ment to support security monitoring. In 2009 12th International Conference on
Information Fusion, pages 1730-1736, July 2009.

[4] U. M. Erdem and S. Sclaroff. Automated camera layout to satisfy task-specific
and floor plan-specific coverage requirements. Comput. Vis. Image Underst.,
103(3):156-169, Sept. 2006.

[5] Y.-G.Fu,]. Zhou, and L. Deng. Surveillance of a 2d plane area with 3d deployed
cameras. Sensors, 14(2):1988-2011, 2014.

[6] J.-]. Gonzalez-Barbosa, T. Garcia-Ramirez, J. Salas, J.-B. Hurtado-Ramos, et al.
Optimal camera placement for total coverage. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, pages 844-848. IEEE, 2009.

[7] S.Hanoun, A. Bhatti, D. Creighton, S. Nahavandi, P. Crothers, and C. G. Esparza.

Target coverage in camera networks for manufacturing workplaces. Journal of

intelligent manufacturing, 27(6):1221-1235, 2016.

D. S. Hochbaum and A. Pathria. Analysis of the greedy approach in problems of

maximum k-coverage. Naval Research Logistics, 45(6):615-627, 1998.

[9] E.Horster and R. Lienhart. Approximating optimal visual sensor placement. In
2006 IEEE International Conference on Multimedia and Expo, pages 1257-1260,
July 2006.

[10] E.Horster and R. Lienhart. On the optimal placement of multiple visual sensors.
In Proceedings of the 4th ACM International Workshop on Video Surveillance and
Sensor Networks, VSSN *06, pages 111-120, New York, NY, USA, 2006. ACM.

[11] S.H.Lo. A new mesh generation scheme for arbitrary planar domains. Interna-
tional Journal for Numerical Methods in Engineering, 21:1403-1426, 1981.

[12] A.T. Murray, K. Kim, J. W. Davis, R. Machiraju, and R. Parent. Coverage opti-
mization to support security monitoring. Computers, Environment and Urban
Systems, 31(2):133-147, 2007.

[13] A. Neishaboori, A. Saeed, K. A. Harras, and A. Mohamed. On target coverage
in mobile visual sensor networks. In Proceedings of the 12th ACM international
symposium on Mobility management and wireless access, pages 39-46. ACM, 2014.

[14] G.L.Nembhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical Programming, 14(1):265—
294, 1978.

[15] A.Pothen. Graph partitioning algorithms with applications to scientific comput-
ing. Technical report, Norfolk, VA, USA, 1997.

[16] H. L. S. Rosenberg, Arnold L. Graph Separators, with Applications. Kluwer
Academic Publishers, Norwell, MA, USA, 2001.

[17] 1. Sreedevi, N. R. Mittal, S. Chaudhury, and A. Bhattacharyya. Camera placement
for surveillance applications. In Video Surveillance. InTech, 2011.

[18] C. Wang, F. Qi, and G.-M. Shi. Nodes placement for optimizing coverage of
visual sensor networks. Advances in Multimedia Information Processing-PCM
2009, pages 1144-1149, 2009.

[19] J. Zhao, R. Yoshida, S.-c. S. Cheung, and D. Haws. Approximate techniques in
solving optimal camera placement problems. International Journal of Distributed
Sensor Networks, 9(11):241913, 2013.

—
&

	Abstract
	1 Introduction
	2 Literature Review
	3 Problem Formulation
	4 Basic Exact Algorithm
	4.1 Preliminaries
	4.2 Constructing Equivisibility Triangulation
	4.3 The Basic Exact Algorithm

	5 Efficient Exact Algorithm
	5.1 The Key Insight: Vertex Separator
	5.2 The Efficient Exact Algorithm
	5.3 Baseline Method

	6 Scalable Algorithm
	6.1 The Greedy Approximation Technique
	6.2 The Scalable Algorithm

	7 Experimental Evaluation
	7.1 Evaluation of Exact Algorithms
	7.2 Comparison with Existing Solutions
	7.3 Evaluation of Greedy Algorithm

	8 Conclusion
	References

