Heterogeneous Coordination for Persistent Monitoring using Particle
Filters and Reinforcement Learning

fMd Ishat-E-Rabban, TJingxi Chen, fVishnu Dutt Sharma, Kulbir Singh Ahluwalia, 'Pratap Tokekar

Abstract— Persistent Monitoring using multiple ground vehi-
cles has several applications including surveillance, patrolling,
and precision agriculture. Existing works on the persistent mon-
itoring problem use a graph theoretic formulation to repeatedly
visit vertices of a given graph. In this work, we present a novel
formulation of the persistent monitoring problem which is based
on repeated visual coverage of an obstructed 2D environment.
We propose a distributed algorithm based on particle filters
and receding horizon strategy to plan the motion of multiple
UGYVs performing the visibility based persistent monitoring
task. We also explore the scenario where a UAV flying over the
environment is assisting the UGVs to plan better, and propose
a reinforcement learning-based architecture to plan the motion
of the UAV. We demonstrate the effectiveness of our proposed
algorithms using simulation based experiments.

I. INTRODUCTION

The persistent monitoring (PM) problem is a variant of
the coverage problem that resembles the idea of patrolling in
real life. Persistent monitoring involves repeatedly covering
a given area, e.g. patrolling, security surveillance, target
searching, etc. In addition to the coverage maximization
objective of the well-studied exploration problem, the PM
problem also requires agents to revisit previously explored
regions in order to achieve repeated monitoring of the space.

Existing works on the PM problem focus on graph-
theoretic formulations where one or more UGVs traverse the
edges of a prespecified graph to repeatedly visit vertices of
the graph or given landmark objects [10]-[12]. In this work,
we formulate a novel visibility based PM problem where a
team of UGVs equipped with 360° visual sensors repeat-
edly patrols an obstructed 2D region. We call the problem
visibility-based persistent monitoring (VPM) problem. We
propose novel algorithms to plan the path of multiple UGVs
to solve the VPM problem.

The design of an algorithm that plans the motion of the
UGVs performing the VPM task depends on whether each
UGYV knows the position of all the other UGVs. In a practical
scenario, it might be unrealistic to assume that each UGV
always knows the positions of all other UGVs exactly, which
requires uninterrupted communication among all the UGVs.
In this work, we make a more realistic assumption that the
UGVs might not always maintain communication among
one another, hence have incomplete information about the
position of the other UGVs.

TRabban, Chen, Sharma, and Tokekar are with the Department
of Computer Science, University of Maryland at College Park
ier@umd.edu, ianchen@terpmail.umd.edu,
vishnuds@umd.edu, tokekar@umd.edu

f Ahluwalia is with the Maryland Robotics Center, University of Maryland
at College Park kulbir@umd.edu

3

4 Ground Robot
« @ Aerial Robot
o

I

The setup of our UAV-UGV collaboration

&

Fig. 1.

Another way of reducing the uncertainty in the position
belief of the UGVs is to use a UAV as shown in Figure 1. The
UAV moves faster over the obstacles, locates UGVs within
the environment, and communicates the acquired location
information to all UGVs within its communication range.
Thus each UGV has a better estimation of the positions of the
other UGVs in comparison with the case where there is no
UAV. Consequently, the UGVs can plan more knowledgeably
while performing the VPM task.

In this work, we make the following contributions:

o We propose a new visibility based formulation of the
PM problem to repeatedly monitor an obstructed 2D
region.

o We propose a distributed algorithm based on particle
filters and receding horizon strategy to plan the motion
of multiple UGVs performing the VPM task by main-
taining position belief about other UGVs.

e We propose an algorithm based on the Actor-Critic
version of Proximal Policy Optimization to plan the
motion of the UAV such that it helps reduce the position
uncertainty of the UGVs performing the VPM task.

o« We conduct simulation-based experiments to demon-
strate the effectiveness of our proposed algorithms.

II. RELATED WORK

The problem of persistent monitoring using multiple
robots has been approached in multiple ways. A variety of
factors like dynamic obstacles, the priority of monitoring
locations, range of communication, and the number of robots
affect the approach taken. Smith et al. [10] consider mon-
itoring stationary locations of interest which change with
time. The setup is such that locations are visited with a
frequency proportional to their rate of change. The objective
is to minimize the rate of change of locations between visits.

In our approach using sweep coverage [13], we have
divided the environment into cells with equal latency that
increases linearly with time. Other works have used graphs
with vertex weights and edge lengths to represent the envi-
ronment as in Alamdari et al. [11] and used weighted latency;

defined as the maximum time between visits to that vertex,
weighted by the importance of that vertex (vertex weight).
Our work is similar to the d-sweeper problem in which each
point in the environment should be visible from a point on
the route followed by robots. Ntafos [14] used the Watchman
Route Problem (WRP) approach for the d-sweeper problem
by superimposing a simple grid on the environment and using
an approximate algorithm for finding a Travelling Salesman
Problem (TSP) route.

Our formulation uses a visibility based approach in which
the robot is not required to reach a node physically and
can observe it from a range. Rezazadeh et al. [12] used a
graph theoretic approach where the robot needs to visit a
vertex physically. They have also considered the time taken
for sensor measurement after reaching a node whereas we
have assumed that the sensors take observations instantly.

While executing the persistent monitoring mission, one of
the major concerns is to ensure that the UAV doesn’t run out
of power. Our work does not consider power constraints, but
Maini et al. [1] have UAVs and UGVs move independently
to their assigned goal locations with the option to recharge
at refueling depots. However, this is a physical-symbiosis
setting where the UGV acts only as a recharge station and
does not help UAV with information sharing.

Blumenkamp et al. [2] use the idea of a heterogeneous
robot system, however, their major focus is on two competing
types of robots, one is cooperative, one is adversarial. The
task is competing for the reward against each other. Sasaki et
al. [4] use the heterogeneous robots in a cooperative setting
however it uses only one UGV and one UAV communicating
with each other. Also, this is a non-dynamic setting i.e. the
UAV surveys the area first, and then the UGV navigates using
this information for exploration. This is possible because the
orienteering problem itself can be done in an offline fashion
between UAV and UGV coordination.

Dille et al. [3] use a UAV as a communication relay
between UGVs for non-line-of-sight operation. UGVs can
provide high-resolution images and accurate data but have a
limited speed and are bound to avoid obstacles. UAVs on the
other hand have the advantage of flying over most obstacles
but provide low-resolution images.

III. PROBLEM FORMULATION

In this section, we will go over our problem formulation
including assumptions and the UAV, UGV planning prob-
lems. In this work, we solve the two planning problems
independently.

A. Assumptions

The key assumptions are listed below:

o The environment is bounded and it consists of static ob-
stacles. The map of the environment (i.e. the boundary,
and the obstacles) is known to all the robots (UGVs
and UAV). The environment is represented as a 2D
occupancy grid.

« All the robots are equipped with GPS, which gives each
robot the capability to localize itself perfectly within the
environment.

o All robots have a limited communication range. When
any pair of robots come within the communication range
of each other, they can exchange information about their
belief of the environment.

« The UAV flies at an altitude above the obstacles. Using a
downward-facing camera, the UAV can view a region on
the 2D grid. The UAV can detect and uniquely identify
UGVs within its viewing region.

o The UGVs are equipped with cameras with 360° field-
of-view (FoV) and a limited visibility range. The views
of the UGVs are occluded by the obstacles.

o The UAV can move faster than the UGVs.

B. Multi-UGV VPM Problem

In this section, we introduce the VPM problem for mul-
tiple UGVs. First, we define visibility between a grid cell
and a UGV, and introduce the idea of latency. A grid cell ¢
is defined to be visible from a UGV r if the line segment
l joining the location of r and the midpoint of ¢ is not
obstructed by the obstacles and the length of [, is at most
the visibility range of the UGV. Let C denote the set of all
free cells (i.e., cells not occupied by obstacles) in the 2D
occupancy map of the environment. Each cell ¢ € C has
a latency value (denoted by I.) in the range [0, l;;q.]. The
latency of a cell varies according to the last time the cell
was visible from some UGV. If a cell c is visible from some
UGV in the current time step, [. is set to 0. Otherwise, if
c is visible from no UGVs currently, /. increases linearly at
each time step, until it reaches l,,,q44-

In the multi-UGV VPM problem, we plan the motion of
the UGVs over a given number of time-steps, T, which we
call the time horizon. In each time-step, each UGV can move
in any direction unless it collides with an obstacle. Note that,
when a free cell ¢ becomes visible from a UGV, the latency
value of ¢ drops to 0. Consequently, the goal of the VPM
problem is to plan the movement of each robot over the time
horizon, such that, the average latency value of all the cells
in C' over the time horizon is minimized.

Fig. 2. An instance of the multi-UGV VPM problem.

Now we describe the VPM problem with an illustrative
example. Figure 2 shows a 120 x 120 2D grid environment,
with 10 UGVs (shown using blue circles), and 60 obstacles

(shown using red rectangles). Shades between green and
black represent latency of the cells, where pure green and
pure black stands for 0 and [,,,4, respectively. The visibility
range of the UGVs is 15 times the length of a cell (shown
using thin black circles surrounding the UGVs). In each time
step, each UGV can move either 1m forward, backward, left,
or right. Purple arrows show the direction of the selected
trajectories of the UGVs.

C. UGV Planning Problem

We model the uncertainty in position belief and latency
belief as follows. Each UGV r maintains its individual local
belief about the latency values of the cells in C, which we
call Latency Belief of r. Also, r maintains it’s individual
local belief about the positions of all UGVs, which we call
Position Belief of r. The latency belief can be represented
as a heat map over all cells in C, and the position belief
can be represented as a set of particles as in the case of a
particle filter. Note that, both the beliefs get updated when r
comes within the communication range of some other robot
and exchanges belief information. Maintaining a belief about
the latency of the free grid cells and the position of the other
UGVs may help each UGV to plan better while performing
the VPM task.

In the UGV planning problem, we divide the time horizon
of T' time-steps into separate planning rounds each of T,
time-steps. At each planning round, we plan the path of each
UGV r for T), time-steps in a distributed manner according
to 7’s latency and position belief.

Given the occupancy grid, the current latency belief, and
the current position belief of a UGV, the UGV planning
problem is to plan the motion of the UGV for the next T},
time-steps such that the VPM objective is minimized.

Note that, the UGVs have different local latency and
position beliefs, but all UGVs execute the same planner to
select their trajectories.

D. UAV Planning Problem

In our formulation of UAV-UGV coordination, since a
UGYV does know the exact position of other UGVs, we use
the UAV to sample and update the belief about all UGVs’
positions and use this shared information to assist the path
planning of all UGVs. Thus UAV needs to plan a path that
minimizes its uncertainty about UGVs’ positions and share
this information with them.

IV. UGV PLANNING ALGORITHM
A. Preliminaries

1) Rapidly exploring Random Tree (RRT): We use
RRTs [5] to generate trajectories from a given UGV position.
The UGV position is considered to be the root. We draw
uniformly random sample points from the free space. For
each sample, a connection is attempted between the sam-
ple and the nearest node in the tree. If the connection is
unobstructed and within a pre-specified length, the sample
is added to the tree as a new node. As samples are drawn
uniformly from the whole search space, RRT is inherently

biased to grow towards unsearched space. An example is
shown in Figure 3(a).

Fig. 3. (a) RRT rooted at the yellow node. (b) Position belief of the yellow
node represented using particle filter. Particles are shown in magenta.

2) Receding Horizon Planning: Receding horizon strat-
egy [6], [7] is commonly used in motion planning. In this
strategy, an agent looks T}, time-steps into the future to select
the best candidate path. But the agent executes the found
path for T}, time-steps, where T}, < T;. After T}, time-steps,
the planner runs again and works in the same fashion. Thus,
the execution window is shorter than the planning horizon,
which gives good results in practice.

3) Particle Filter: Particle filter [8], [9] is a Monte-Carlo
technique to solve the filtering problem. In our problem, we
use a particle filter to represent the position belief of a UGV.
Each UGV r; maintains a set of particles for each of the other
UGVs r; which represents r;’s belief about the potential
location of r;. If the particles are close together, r; has a
good estimation of where r; is located and vice versa. The
position of the particles is updated at the completion of each
planning round. If at that time, r; and r; are within the
communication range of each other, all particles are updated
to be at the true location of ;. Otherwise, r; plans on behalf
of r; to find the updated positions of the particles.

B. The Algorithm

The UGV planning algorithm is presented below (Algo-
rithm 1). The algorithm is from the perspective of robot 7.
It takes as input r’s latency belief L,, r’s position belief P,
the number of simulations I, the planning horizon 7},, and
the extended horizon Tj,. It returns the position of r for the
next T}, time-steps. Here, R denotes the number of robots.

The algorithm runs I simulations based on the current
latency and position belief of r. In each simulation, R
particles, one particle for each robot, are sampled from r’s
position belief P. (Line 2). The set of R sampled particles
is denoted by X, which stores the positions of the R robots.
In the simulate routine in Line 3, we construct RRTs rooted
at each particle in X, consider a random ordering of the
robots, then greedily assign paths of length T, to all the
robots one after another according to the VPM objective.
The positions of all the robots in all the time-steps during
the extended horizon returned by the i*” simulation are stored
in the variable Si.7. ;.p-

Next, we update the latency belief such that it correctly
estimates the latency values of the environment after 7}, time-

Algorithm 1 UGV Planning Algorithm (for Robot 7)
Input: L,, P, I, T, T,
Output: Position of r for next T}, time-steps

for: <~ 1to I do

X « sample(P,)
engig? 1.p < simulate(X, L,, T,)
L, « updateLatency(Ui<i<1Si.1, 1.ps Lr)
P, + updatePosition(U1<i<1S, 1.5)
Yl:Tq — ﬁndBestPath(UlSing{:Tq’LR)
return Y1;T,,

AN A ol >

steps using the updateLatency routine (Line 5). Starting from
latency L,, we simulate 7}, time-steps using the position
values in S. We repeat this process for [iterations and take
the average, which gives the updated latency value after T},
time-steps.

Next, we update the position belief such that it correctly
estimates the position of the other robots after 7}, time-steps
using the wupdatePosition routine (Line 6). For each robot
other than r, we randomly sample the particles from S at
time-step 7;,. Note that, at the beginning of the planning
round, if some robot is within the communication range of r,
there is no uncertainty in its position belief. All the particles
corresponding to such robots are located at the true location.

Finally, we find the best path of robot r in a receding
horizon fashion using the findBestPath routine (Line 7). We
construct an RRT rooted at r and select the path of length
T, that minimizes the VPM objective. We use the simulation
results stored in S to compute the best path over the extended
horizon and return the initial segment of length 7}, of the
selected best path (Line 8).

V. UAV PLANNING ALGORITHM
A. Overview

Our planning algorithms for UAV can be divided into two
categories:

1) Heuristics-based Planning: We use an information
greedy algorithm which moves the UAV in the direc-
tion with the highest uncertainty

2) Learning-based planning: In this case, we try reinforce-
ment learning (RL) algorithms to learning to move
efficiently for reducing uncertainty

Both of these algorithms use a particle-filter based ap-

proach described in the next section.

B. Latency-based Particle Filter (L-PF):

L-PF is the common input for all of our UAV planning
algorithms. The process of our L-PF is as shown in Figure
4. The algorithm for L-PF is shown in Algorithm 2. The P!
is the belief (set of particles) of UGV 7’s position. W} is
the latency weight for each UGV, note that all particles in
P! for UGV r share this weight W!.We use latency weight
W} to model the time elapsed since UAV’s last detection of

UGV r, thus UAV can infer the correct ordering of future
visits of UGVs. The pos? is the position of the UAV at the
time t.

The subroutines in Algorithm 2 are as following:

1) motion: Taking in P! (particles about UGV r), and
applying the motion model (path planning algorithm)
for UGV r to update the position of all particles.

2) measurement: Taking in UAV’s position and get a
measurement for evaluating the quality of the current
belief/particles

3) resample: Based on the measurement m! and belief
after motion Pf,, we can resample particles to get a
better estimation/belief about UGVs’ positions.

4) updateLatency: This will update the latency W of all
UG V/their particles. W™ = 0 if r is in UAV’s FOV,
otherwise W!T1 = W!+ D, where D is a user-defined
latency accumulating rate to control how often should
UAV revisits (re-localizes) a UGV r.

5) generateHeatmap: In this subroutine, we discretize the
environment into the cells with equal size. the cell
value cell(i,j): cell(i,j) = —100, if UAV is in
this cell, otherwise cell(i,) is the summation of all
particles’ latency value in this cell. As we can see in
the heatmap as shown in Figure 4. The darkest cell
is the UAYV, and bright regions corresponding to the
summation of latency value of particles in that cell.

Environnment Belief Heatrmap

(a), (b) (c) [

Fig. 4. The process of our L-PF algorithm. In the environment, the blue
box are is the FOV of UAYV, the green paths are the trajectories of UGVs.
(a) is particle update as in general particle filter. (b) is latency update of
UGVs (partciles) visting latency. (c) is heatmap generation.

Algorithm 2 L-PF Algorithm

Input: P!, W}, pos' ,

Output: heatmap (about P!T1, Wit
N, < Number of UGVs

1: for r < 1to N, do
2 P! + motion (P})
3: m! < measurement (pos’)
4. P! resample (P!, m?)
5. WL < updateLatency (W}, m?)
6: end for
heatmap < generateHeatmap(P/*!, Wi+t1)
7: return heatmap

C. UAV Planning Structure:

Our UAV planning algorithms utilize the heatmap gener-
ated by our L-PF algorithm. The structure of our planning
is shown in Figure 5. The problem here can be defined as
an MDP, where the state s; is the heatmap generated by
the L-PF Algorithm at time ¢, action a; is the direction of
motion for UAV in one of the four direction (a; € A :
{North, East, South, West}), transition T is deterministic
and certain (i.e. T'(s¢,a¢,8}) = 1, for all s¢, a¢, s¢41). The
reward collected by a UAV at time t and state s; is defined
as as following:

N,
Re(si) = > ~W} (1)
r=1

The reward corresponds to the summation of negative latency
weight on all UGVs.
Our path planning part can be divided into two categories.

o Heuristic-based path planning: Using the beliefs from
particle filter, we generate the next step for the UAV
to move using an information greedy algorithm. In this
method, the UAV moves in the direction of the maxi-
mum total latency calculated over state S; as following:

ar+1 = argmax exploreHeatmap(sg, ay),
a€A

where exploreHeatmap(dir) routine returns the sum
of heatmap values, if the UAV were to explore all of its
cells in the direction given by a;.

o Learning-based path planning: We also try to investi-
gate the performance of Reinforcement Learning (RL)
approach on this path planning problem. We train an
Actor-Critic version of Proximal Policy Optimization
(PPO) [15] to see how the learning-based approach will
perform on this path planning problem. The PPO takes
input of heatmap and output the action for UAV.

D. Objective function for UAV:

In this section, we define the objective for our learning-
based approach. For a policy 7, The objective for UAV is
finding a policy 7 such that:

max E[Z R(s)] (2)

Since we want to UAV to localize all UGVs as efficient as
possible. (minimizing the latency weight of all UGVs)

|"’" F‘

Move UAV/Update

Heatmap

-[glaat:ning]-

Fig. 5. The structure of UAV planning

VI. RESULTS AND EVALUATION

A. Evaluation of UGV Planner

1) Compared Algorithms: In this section, we evaluate the
performance of the UGV planning algorithm (Algorithm 1).
We call this VPM algorithm. We compare the performance
of the VPM algorithm with two algorithms. (1) The VPM-
T algorithm, in which each UGV knows the true location
of all other UGVs. (2) The VPM-O algorithm, in which the
UGVs neither know the position of the other UGVs, nor they
maintain a position belief. The evaluation metric is the VPM
objective in Section III-C.

2) Experimental Setup: The environment is a 50 x 50
2D region discretized into cells of size 1 x 1. There are
5 UGVs and 10 obstacles. The UGVs move at a speed of 1
unit per time-step. The communication and visibility range
of the UGVs are 5 units. The time horizon is 7" = 500 time-
steps and the planning horizon of each planning round is
T, = 10 time-steps. To generate trajectories, we construct
RRTs with 50 nodes. The position belief regarding a UGV
is represented using 10 particles. [, = 1.0 and the latency
value of a non-visible cell increases by 0.02 unit per second.
Each experiment is performed 10 times and the average
is reported. The algorithm is implemented using C++. The
experiments are conducted on a core-i7 2GHz PC with 8GB
RAM, running Microsoft Windows 10. The visualization tool
used is OpenGL.

08 T T T

VPM —O—
VPM-T
VPM-0 —A—

Average Latency
I
b
-S>

06 —

05 | | |
10 15 20 25 30

Extended Horizon (sec)

Fig. 6. Evaluation of VPM algorithm. 7T} = 10 time-steps.

3) Results: To compare the performance of the discussed
algorithms, we vary the extended horizon Tj from 10 time-
steps to 30 time-steps in increments of 5. The experimental
results are presented in Figure 6. Here lower value of average
latency represents better performance and vice versa. The
results show that the proposed VPM algorithm performs
better and worse than the VPM-O and VPM-T respectively,
because VPM-O and VPM-T has no and perfect location
estimation of other UGVs respectively. Also, in the case
of all the algorithms, the performance improves when the
extended horizon is increased, which is a consequence of
receding horizon planning strategy.

B. Evaluation of UAV Planner

For evaluation of UAV-Planner algorithms, we devel-
oped our own environment in Python to support learning-
based algorithms. We used a comparatively smaller grid
(100cells x 100cells) to reduce the computational cost of
the particle filter and train the learning-based method faster.
As the metric, we use episodic reward RS = 23:1 R+ (st),
where T is the length of the episode. As we were not
able to integrate a UGV planner into our setup, the UGVs
were moved randomly. The UGVs have a field-of-view with
diameter 6 cells and move 3 cells in one step. The drone has
a square filed-of-view of 30 cells and moved 6 cells in one
step. The L-PF Algorithms uses 10 particles for each UGV.

As baseline we used two algorithms: (a) Random Motion
Algorithm, which randomly select one of the four direction to
move, and (b) Lawnmower Algorithm, which make the UAV
move on a pre-defined path (Boustrophedon path) [16]
scanning the grid from in a repeated manner. These algo-
rithms do not use any information perceived by the UAV.

C. UAV-Planner

In this section, we present our results about both learning-
based and heuristic-based approach on UAV’s path planning.

For the learning based approach, since our environment
size is large (100 x 100 grids), we do not have enough
computational power to finish the training. We only train for
15000 episodes and with 500 steps in each episodes, using
a GeForce RTX 2080 Ti GPU. This partial learning result is
as shown in Figure 7.

100000

—110000

—120000

—130000

—140000

Average Reward over the Last 100 Episodes

0 2000 4000 G000 BOOO 10000 12000 14000
Number of training steps

Fig. 7. The learning graph for PPO approach

We can see that our PPO-based approach learns to increase
the reward collected UAV through episodes. However, this
increase in reward is slow. The reason for this can be the
large size of our map. Since the size of map is large, UAV
can rarely get the experience of localizing any of UGV, this
lack of experience will cause difficulty in learning for our
RL approach. We project that as we run the training longer,
the performance of our model will still increase.

For comparison, we report the average episodic reward of
50 iteration. Each episode is of length 7'=1000, and consists
of a randomly located UAV, UGVs and the obstacles. As we
can see in Figure 8 and 9, the heuristic-based approach per-
forms better than other approaches and scales comparatively
well for different number of UGVs. The episodic reward
decreases with increase in the number of robots as more

number of robots will result in higher total uncertainty. We
do not observe any significant change in reward with change
in the number of obstacles. The learning-based approach
doesn’t follow a specific trend either. Similar to the previous
setting heuristic-based algorithm performs the best followed
by Lawnmower and Random motion algorithms. Learning-
based algorithm does not perform well here either. The
reason that the performance of learning-based approach is
lowest may attribute to the insufficient training of our model
as we discuss at the beginning.

1e6

-0.8

Avg. Episodic Reward

= Random

-14 2= Lawnmower
=&~ Info-Greedy
-1.6 RL

2 3 4 5 & T B 9 10
Number of robots

Fig. 8. Average episodic reward v/s Number of robots (4 UGVs)
-100000 R
—200000
B
5 — 2
£ 300000 + Random
< #= Lawnmower
2 —E- Info-Greedy
n —400000 *—_\\h RL
2
= =
& -500000
—600000
20 30 40 50 60 70 80
Number of Obstacles
Fig. 9. Average episodic reward v/s Number of robots (40 Obstacles)

VII. CONCLUSION

We empirically verify that maintaining position belief
about the other UGVs improves the performance of the VPM
task in comparison with the case where the position belief is
not maintained. For UAV planning, the information greedy
achieved good performance on localizing UGVs, however
the motion model assumed here is sames as actual UGV
motion. We would like to explore its performance when
the assumed motion model differs from the reality. We also
expect the learning-based algorithm to perform better with
more training, as suggested by the learning graph.

We were not able to combine our work on UGV and UAV
together and thus were not able to observe the efficacy of
the proposed algorithms. The differences in the programming
languages (C++ and Python) was also a contributing factor
here. As next step, we plan to combine the two parts
where the UAV shares its belief with the UGVs in sight
and the UGVs then plan a path by utilizing this additional
information.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

P. Maini, K. Yu, P. B. Sujit and P. Tokekar, “Persistent Monitoring with
Refueling on a Terrain Using a Team of Aerial and Ground Robots,”
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Madrid, 2018, pp. 8493-8498.

Blumenkamp, Jan, and Amanda Prorok. “The Emergence of Adver-
sarial Communication in Multi-Agent Reinforcement Learning.” arXiv
preprint arXiv:2008.02616 (2020).

Dille, Michael, Ben Grochosky, Stephen Nuske, Mark Moseley, and
Sanjiv Singh. “Air-ground collaborative surveillance with human-
portable hardware.” (2011).

Sasaki, Takahiro, Kyohei Otsu, Rohan Thakker, Sofie Haesaert, and
Ali-akbar Agha-mohammadi. “Where to Map? Iterative Rover-Copter
Path Planning for Mars Exploration.” IEEE Robotics and Automation
Letters 5, no. 2 (2020): 2123-2130.

S. Lavalle,“Rapidly-Exploring Random Trees: A New Tool for Path
Planning,” The Annual Research Report, 1998.

Schouwenaars, Tom and How, Jonathan and Feron, Eric. “Receding
horizon path planning with implicit safety guarantees.” Proceedings of
the 2004 American control conference, (2004), 5576-5581.

Bircher, Andreas and Kamel, Mina and Alexis, Kostas and Oleynikova,
Helen and Siegwart, Roland. “Receding horizon path planning for 3D
exploration and surface inspection.” Autonomous Robots, (2018), 291-
306.

Del Moral, Pierre. “Nonlinear filtering: Interacting particle resolution.”
Comptes Rendus de 1’Académie des Sciences-Series I-Mathematics,
(1997), 653-658.

Y, Xiao and S. Katt and A. t. Pas and S. Chen and C. Amato. “Online
Planning for Target Object Search in Clutter under Partial Observ-
ability.” 2019 International Conference on Robotics and Automation
(ICRA), (2019), 8241-8247.

Smith, Stephen L and Rus, Daniela. “Multi-robot monitoring in
dynamic environments with guaranteed currency of observations.” 49th
IEEE conference on decision and control (CDC), (2010), 514-521.
Soroush Alamdari and Elaheh Fata and Stephen L. Smith. “Persistent
Monitoring in Discrete Environments: Minimizing the Maximum
Weighted Latency Between Observations.” International Journal of
Robotics Research, (2012), 138-154.

Rezazadeh, Navid and Kia, Solmaz. “A sub-modular receding horizon
solution for mobile multi-agent persistent monitoring.” (2019).
Choset, Howie. “Coverage for robotics—a survey of recent results.”
Annals of mathematics and artificial intelligence 31, no. 1-4 (2001):
113-126.

Ntafos, Simeon. “Watchman routes under limited visibility.” Compu-
tational Geometry 1, no. 3 (1992): 149-170.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. “Proximal policy optimization algorithms.” arXiv
preprint arXiv:1707.06347 (2017).

Choset, Howie. “Coverage of known spaces: The boustrophedon
cellular decomposition.” Autonomous Robots 9, no. 3 (2000): 247-
253.

	Introduction
	Related Work
	Problem Formulation
	Assumptions
	Multi-UGV VPM Problem
	UGV Planning Problem
	UAV Planning Problem

	UGV Planning Algorithm
	Preliminaries
	Rapidly exploring Random Tree (RRT)
	Receding Horizon Planning
	Particle Filter

	The Algorithm

	UAV Planning Algorithm
	Overview
	Latency-based Particle Filter (L-PF):
	UAV Planning Structure:
	Objective function for UAV:

	Results and Evaluation
	Evaluation of UGV Planner
	Compared Algorithms
	Experimental Setup
	Results

	Evaluation of UAV Planner
	UAV-Planner

	Conclusion
	References

