
F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

An Efficient Approach of Computing Double Cut and
Join Distance for Genomes with Duplicate Genes

Md. Ishat-E-Rabban1, Shibbir Ahmed2, and Md. Nazmul Hoq3

11014052029, ieranikg@gmail.com
21015052005, shibbirahmedtanvin@gmail.com
31015052068, mnsalim.cse@gmail.com

Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology

Abstract Genome Rearrangement refers to large-scale mutations in genomes
which is responsible for complex changes and structural variations. Computing
the edit distance between two genomes is a fundamental problem in the study of
genome evolution. The Double Cut and Join (DCJ ) model forms the basis for most
algorithmic research on Genome Rearrangements. Edit distance under theDCJ
model can be computed in linear time for genomes without duplicate genes but
DCJ computation for two genomes with duplicate genes is NP-Hard. All the exist-
ing solutions to the problem of finding DCJ distance between two genomes con-
taining duplicate genes construct an adjacency graph and find the permutation with
minimum number of cycles. We propose a new approach to the problem that in-
volves A* search. We provide a tight heuristic to accelerate the search and also a
preprocessing technique to farther improve the performance of our solution. Our
solution works efficiently and correctly if there are no duplicate genes but might not
find the optimum answer if the genomes contain duplicate genes.

1. Introduction

Genome rearrangement means major genomic mutation
due to erroneous cell division after meiosis or mitosis.
The emergence of entire genome sequencing has pro-
vided us with huge amount of data on which to study
genomic rearrangements. The research of genomic
rearrangements has been emerging since the problem
was formulated two decades ago. A fundamental prob-
lem in genome rearrangements is to compute the edit
distance between two genomes. Edit distance refers to
the minimum number of operations needed to transform
one genome into another. Under the inversion model,
Hannenhalli and Pevzner gave the first polynomial-time
algorithm to compute the edit distance for unichromo-
somal genomes [1], which was later improved to linear
time [2].

Genome rearrangements have been modeled by a
variety of operations such as inversions, translocations,
fissions, fusions, transpositions and block interchanges.
All these rearrangements can be represented by the
double cut and join (DCJ) operation [3], which basically
consists of cutting a genome in two distinct positions
(possibly in two distinct chromosomes) and joining the
four resultant open ends in a different way. A simple
approach to apply this operation to the most general type
of genomes with a mixed collection of linear and circular
chromosomes was proposed in [4].

Most of the algorithms assume genomes contain no
duplicate genes. However, gene duplications are
widespread events and have long been recognized as a
major driving force of evolution [5, 6]. For example,
in human genomes segmental duplications are hotspots
for non-allelic homologous recombination leading to
genomic disorders, copy-number polymorphisms, and
gene and transcript innovations [7]. Chen et al. [8]
studied the problem of computing the inversion distance
for genomes in the presence of duplicate genes. More-
over, for genomes with duplicate genes, computing the
rearrangement distance is NP hard [9] even when the
genomes have the same content and only DCJ operations
are allowed to do so [10].

All the prevalent solutions to the problem of finding
DCJ distance between two genomes containing dupli-
cate genes normally construct an adjacency graph and
find the permutation with minimum number of cycles.
In this research study, we propose a new approach to the
problem which is based on A* search. We provide a tight
heuristic to accelerate the search and also an effective
preprocessing technique to improve the performance to
the extent of our solution. Our proposed solution works
efficiently and precisely if there are no duplicate genes.
Although it may not find the optimum solution if the
genomes are comprised of duplicate genes.

Page 1 of 8



F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

2. Preliminaries
Genome is the entire DNA of a living organism. Gene is a
segment of DNA that is involved e.g. in producing a pro-
tein and its orientation depends on the DNA-strand that it
lies on. Genome consists of Chromosomes. Chromosomes
are linear or circular list of Genes. To sum up, genome is
a set of chromosomes and Chromosome is a linear or cir-
cular list of genes which is known as synteny blocks.

Figure 1. Extremities, Adjacency and Telomere of a
gene

Extremities are two ends (head and tail) of a gene as illus-
trated in the Figure 1. Adjacency refers to two consecutive
extremities which is also clearly indicated in the Figure 1.
Another important term is Telomere which is explained
as an extremity that is not adjacent to any other gene is
called a telomere. In Figure 1, at , ct are two telomeres.

 

 

(a) Inversion 

 

 

(b) Block interchange 

 

(c) Transpositions 

 

 

 

 

 

(d) Translocations 

 

 

 

 

 

(e) Fusions and fissions 

 

or

o

 

Figure 2. Variety of operations of Genome Rearrange-
ment

Genome rearrangements have been modeled by a variety
of operations such as inversions, translocations, fissions,
fusions, transpositions and block interchanges. Now, In-
versions reverse the order and the orientation of a seg-
ment as illustrated in Figure 2(a). Block interchanges ex-
change two segments which is also clearly shown in Fig-
ure 2(b). Transpositions are block interchanges whose
exchanged segments are adjacent which has been demon-
strated in Figure 2 (c). Translocations exchange two chro-
mosome ends as it has been demonstrated in the Figure 2
(d). Finally, Fusions and fissions (shown in Figure 2 (e)
) are translocations involving or creating empty chromo-
somes.

3. Related Work
The solutions of sorting multi-chromosomal genomes
depend on what kind of rearrangement operations is
allowed. Given their prevalence in eukaryotic genomes
[11], the usual choices of operations include transloca-
tions, fusions, fissions and inversions. However, there
are some indications that transpositions should also be
included in the set of operations [12], but the lack of
theoretical results showing how to include transpositions
in the models led to algorithms that simulate transpo-
sitions as sequences of inversions. In the paper[3], the
authors describe a general framework in which circular
and linear chromosomes can coexist throughout evolv-
ing genomes. They model inversions, translocations,
fissions, fusions, transpositions and block interchanges
with a single operation, called the double cut and join
operation. This general model accounts for the ge-
nomic evidence of the coexistence of both linear [13] and
circular chromosomes or plasmids in many genomes [14].

With respect to the DCJ operation, the first prob-
lem is to investigate formal properties of graphs that
are unions of paths and cycles. These graphs also give
a firm starting point to explore difficult rearrangement
problems that involve either gene duplications [15] or
missing information about the actual order of genes in a
genome [16]. Again, the Hannenhalli-Pevzner distance,
that allows only translocations and inversions on linear
chromosomes [17], can be recast as avoiding all DCJ
operations that create a circular chromosome in either
genomes. Another kind of restriction has recently been
studied in [18], where operations are fusions and fissions
between circular unsigned chromosomes, and block
interchanges within a circular unsigned chromosome.
The authors assign equal weight to the three operations,
even if a block interchange requires two DCJ operations.
Their algorithm first applies fusions to both source and
target genome, until they have two genomes whose
chromosomes have equal gene content. These fusions
can be identified in linear time by a search of the ad-
jacency graph. Then they sort the resulting genomes
by block interchanges using an O(N2) time algorithm
described in [19]. The combinatorics and algorithmics
of genomic rearrangements have been the subject of

Page 2 of 8



F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

much research since the problem was formulated in the
1990s [20]. For the the multichromosomal genomes,
the edit distance under the Hannenhalli-Pevzner model
(inversions and translocations) has been studied through
all these studies [21, 22, 23], culminating in a fairly
complex linear-time algorithm [24]. Under the DCJ
model, the edit distance can be computed in linear time
for two multi-chromosomal genomes in a simple and
elegant way [4].

A DCJ operation makes two cuts in the genome, either
in the same chromosome or in two different chromo-
somes, producing four cut ends, then rejoins the four
cut ends. Genomic rearrangements include inversions,
transpositions, circularizations, and linearizations, all of
which act on a single chromosome, and translocations,
fusions, and fissions, which act on two chromosomes.
These operations can all be described in terms of the
single double-cut-and-join (DCJ) operation [25, 26]],
which has formed the basis for most algorithmic research
on rearrangements over the last few years [27, 28].

It has been studied [8] that the problem of comput-
ing the inversion distance for genomes in the presence of
duplicate genes. It has been proved that the problem is
NP-hard and designed heuristics to solve it, which thus
packaged into the SOAR software system. They applied
SOAR to assign orthologs on a genome wide scale.
Later, they extended SOAR to unite rearrangements and
single-gene duplications as a new software package,
called MSOAR, which can be applied to detect inparalogs
in addition to orthologs [29]. Recently, they incorporated
tandem duplications into their model, and demonstrated
that the new system achieved a better sensitivity and
specificity than MSOAR [30]. In the paper [31], authors
focus on the problem of computing the edit distance for
two genomes with duplicate genes under the DCJ model.
In [32], they described a capping method to remove
telomeres by introducing null extremities. The problem
is also NP-hard, which can be proved by a reduction from
the NP-hard problem of breakpoint graph decomposition
[33]. In another paper [34] authors recently studied the
problem of computing the DCJ distance between two
genomes with the same content and possibly duplicate
genes, with the restriction that they have exactly the
same number of copies of each gene in each genome.

4. Methodology
As discussed in the related works section, it is evident that
all existing methods to compute the double cut and join
distance for genomes with duplicate gene use a partic-
ular approach based on graph theory. The previous ap-
proaches form an adjacency graph between the source
and destination genome and try to minimize the number
of circles over all possible bijections and/or permutations.
In order to find the bijection that minimizes the number of
circles, they use several techniques. The first work men-
tioned in the related works section uses an integer linear
programming (ILP) formulation and conducts a prepro-

cessing step involving an iterative discharge step to find
the optimum solution. The second approach mentioned
in the related work section uses a variant of the minimum
common string partition problem to develop a linear time
approximation algorithm where the number of duplicates
is assumed to be bounded. We propose a new solution
to the problem of calculating the double cut and join dis-
tance between two genomes with duplicate genes that,
unlike all the previous works, does not leverage on the
idea of adjacency graph. Instead, we adopt a different
paradigm, A* search, which is frequently used in the field
of artificial intelligence. A* search can be used to find the
optimum path between two nodes in a graph. The per-
formance of the A* search can be improved by using a
tight heuristic function. In our solution we use A* search
to find the distance between the given source and desti-
nation genome and use a heuristic function that provides
a tight lower bound to the predicted distance to the des-
tination. We also use some preprocessing on the source
and destination genomes to achieve farther speedup in the
performance of the A* search. In Section 3.1, we discuss
the general procedure of the A* search and how our prob-
lem is translated to an instance of a graph search prob-
lem, where A* search can be used to find the optimum
solution. Next in Section 3.2, we introduce the heuristic
that we have used to drive the A* search. Finally in Sec-
tion 3.3, we describe the preprocessing step that we have
used to improve the performance of the heuristic driven
A* search.

4.1. A* Search
In this section, first we discuss some preliminary ideas re-
garding the A* search and then we present how the prob-
lem of finding the double cut and join distance between
two genomes containing duplicate genes can be translated
to an instance of the A* search. As a result solving the A*
search problem eventually results in finding the DCJ dis-
tance between the source and destination genomes. A*
is an informed search algorithm for finding the optimum
path between two nodes of a graph. It uses best first ap-
proach to select the node to expand next. It solves prob-
lems by searching among all possible paths to the des-
tination node for the one that incurs the smallest cost.
Among these paths it first considers the ones that appear
to lead most quickly to the solution. It is formulated in
terms weighted graph. It starts from the source node and
it constructs a tree of paths starting from that node, ex-
panding paths one step at a time, until one of its paths
ends at the destination node. At each iteration, the A* al-
gorithm needs to determine which of its partial paths to
expand into a longer path. It does so based on an estimate
of the cost still to go to the destination node. Specifically,
A* selects the path that minimizes,

f (n) = g(n) + h(n)
where n is the last node on the path, g(n) is the cost of
the path from the source node to n, and h(n) is a heuris-
tic that estimates the cost of the cheapest path from n
to the destination. The heuristic is problem-specific. For
the algorithm to find the actual shortest path, the heuris-

Page 3 of 8



F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

tic function must be admissible, meaning that it should
never overestimate the actual cost to get to the destina-
tion node. A* considers fewer nodes than any other ad-
missible search algorithm with the same heuristic. This
is because A* uses an optimistic estimate of the cost of
a path through every node that it considers-optimistic in
the sense that the true cost of a path through that node to
the destination will be at least as great as the estimate.

4.2. Our Approach
Now we describe how the DCJ problem can be converted
to an A* search problem. Consider an undirected graph
G, where there exists one node in G for each different per-
mutation of the genes in the source genome (or equiva-
lently the destination genome, as the source and desti-
nation contain the same set of genes). There exists an
undirected edge between two nodes, u and v, of G, if the
genome represented by u can be translated to the genome
represented by v by a single DCJ operation or vice versa.
Each edge of G has a weight of 1. There is a one-to-one
correspondence between the actual DCJ problem and the
problem of determining the distance between two nodes
in G, where the two nodes represent the source and des-
tination genome. Thus an instance of a DCJ problem can
be translated to an instance of A* search in an undirected
graph. So if we are provided with an instance of the DCJ
problem, first we construct the graph G as stated above.
Then we perform A* search on G to find out the distance
between the nodes representing the source and destina-
tion genome and this distance is the desired DCJ distance.
The algorithm depicting the whole procedure is given in
Algorithm1.

Algorithm 1: computeDCJ(src, dst)
Input: Source Genome, Destination Genome
Output: DCJ Distance

1 construct G from src and dst
2 open_l ist = set containing the node for src
3 closed_l ist = empty set
4 src.g = 0
5 src. f = src.g + heuristic(src, dst)
6 while open_l ist != Empt y
7 cur = open_l ist element with lowest f cost
8 if cur = dst
9 return cur. f //path found

10 remove cur from open_l ist
11 add cur to closed_l ist
12 for each n in neighbors(cur)
13 if n not in closed_l ist
14 n. f = n.g + heuristic(n, dst)
15 if n is not in open_l ist
16 add n to open_l ist
17 else
18 open_n = neighbor in open_l ist
19 if n.g < open_n.g
20 open_n.g = n.g
21 open_n.parent = n.parent
22 return NU LL // no path exists

In the Algorithm 1, computeDCJ , we maintain two
lists. open_l ist and closed_l ist. open_l ist consists of
nodes that have been visited but not expanded (meaning
that successors have not been explored yet). This is the
list of pending tasks. closed_l ist consists on nodes that
have been visited and expanded (successors have been ex-
plored already and included in the openl ist, if this was
the case).

4.3. The Heuristic
In this section, we describe the heuristic function that we
have used to drive the A* search. Note that in lines 5
and 14 of the algorithm computeDCJ , we have calcu-
lated the heuristic distance to the destination node. The
heuristic value of a node, n, denoted by h(n), serves as an
estimation of the distance between n and the destination
node. For the algorithm to find the actual shortest path,
the heuristic function must be admissible, meaning that it
never overestimates the actual cost to get to the nearest
destination node. The heuristic value of a node n pro-
vides a lower bound on the predicted distance between
n and the destination node. Thus the actual distance be-
tween n and the destination is at least as large as h(n).
The performance of the A* search is largely dependent on
the choice of the heuristic function. If a heuristic func-
tion is able to provide a very tight lower bound, the A*
search will converge to the destination node with fewer
expansions. In this way a tight heuristic function helps to
improve the performance of the A* search. Now we dis-
cuss the heuristic function used in our solution to estimate
the distance to the destination node from a given node.
In order to devise an efficient heuristic for the A* search,
we make some observations. Figure 3 lists all possible
types of DCJ operations.

We intend to track the changes in adjacencies and telom-
eres and the changes in the number of adjacencies and
telomeres. Table 1 lists these changes for each of six types
of DCJ operation. Here the types are assumed to be num-
bered from 1 in a row-major order from the top-left.
Table 1 allows us to make the following four key observa-
tions.

1. One DCJ operation changes the number of adjacen-
cies at most by 1

2. One DCJ operation changes the number of telomeres
at most by 2

3. One DCJ operation changes at most 2 adjacencies

4. One DCJ operation changes at most 1 telomere

The above key observations allow us to provide a lower
bound on the distance between two given genomes and
thus devise a heuristic function. Given two genomes g
and h, we make a list of their adjacencies and telomeres.
Then we determine the changes in adjacencies and telom-
eres and the changes in the number of adjacencies and
telomeres. The four key observations provide a lower
bound on the number of DCJ steps required to make

Page 4 of 8



F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Figure 3. List of all possible types of DCJ operations

Table 1. Changes in adjacencies and telomeres for each of six types of DCJ operation

Type Change in number of adjacencies Change in number of telomeres Change in adjacencies Change in telomeres

1 0 0 2 0

2 0 0 1 1

3 1 2 0 0

4 0 0 2 0

5 0 0 1 1

6 1 2 0 0

the changes. Figure 4 illustrates with an example how
the heuristic distance between two genomes can be com-
puted.

Here two adjacencies remain unchanged, namely (B, C)
and (D, E). But the adjacency (A, B) get changed. Also
the number of adjacencies has increased by 1 as the desti-
nation genome has 4 adjacencies while the source genome
has 3. From Table 1 and the key observations, we can de-
duce that a single DCJ operation cannot bring about all
these changes in the adjacencies. At least two DCJ op-
erations are required. Similarly we can list the telomeres
and derive another lower bound and we can use the max-
imum of these two lower bounds as the heuristic distance
between two genomes.

The heuristic function discussed above provides a very
tight lower bound. For example, in Figure 4, the ac-
tual DCJ distance between the source and destination
genome is 2 which equals the estimated heuristic distance.
Thus we perform an A* search with the above formu-
lated heuristic to determine the DCJ distance between
two genomes.

4.4. The Preprocessing Step
In this section, we discuss a preprocessing step which can
be used to improve the performance of the basic A* search
solution. First we mention a bottleneck that slows down
the A* search. Then we discuss the intuition behind de-
veloping a preprocessing step that can remove the bot-
tleneck. Finally we describe the preprocessing phase in
details.

In the basic A* solution discussed thus far, there is an over-
head that degrades the performance despite the use of
a good heuristic function. In line 12 of the Algorithm 1
computeDCJ , we expand all the neighbors of the current
node and compute the heuristic values of the neighbor-
ing nodes. But note that if the number of genes in the
genome is n, the number of neighbor nodes of a given
node is O(n2). This is because from a genome compris-
ing n genes, we can go the n2 other nodes by making a
single DCJ operation. For a DCJ operation we need to
choose two locations in a genome and two locations from
a genome of n genes can be selected in n2 ways. So at each
step of computeDCJ , we need to expand all these neigh-
boring nodes and compute their heuristic distance to the
destination. Computing the heuristic value for all these
neighbors in each step of the algorithm is a prohibitively

Page 5 of 8



F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Figure 4. An Example

expensive task and can hamper the performance of the al-
gorithm computeDCJ to a great extent. So we conduct
a preprocessing step on the given source and destination
genomes before the A∗ search and limit the set of neigh-
bors to be expanded with a view to removing this bottle-
neck.
Figure 5 illustrates the intuition behind the preprocess-
ing step. In this figure two DCJ operations are shown.
In the first operation, the yellow and red segments got
inverted. In the second operation, the selected locations
to split the genome were the red-yellow junction and the
purple-green junction.
Observe that the order of genes were unchanged in the
single color segments. There can thousands of genes in
these segments. So we can deduce that if a contiguous
segment of genes in the source genome can be found un-
changed in the destination genome, then no DCJ cut loca-
tions were selected within the segment. Otherwise it can-
not be found in the same order in the destination genome.
In this way we can restrict the potential cut locations in a
genome, which will result in the decrease of the size of the
set of neighbors of a node which represents the number
of potential cut locations. This intuitive idea allows us to
develop the following preprocessing step to improve the
performance.
The preprocessing phase has the following steps:

1. Determine the maximal contiguous segment staring
at each index in the source genome that can be found
in the destination genome.

2. Determine a subset of the segments found in Step
1 of minimum cardinality where the segments in
the subset are mutually disjoint and cover the whole
genome.

3. The boundaries of the segments found in Step 2 are
the potential cut locations.

Figure 6 illustrates the ideas developed above. The left
portion of the figure shows the output of step 1 and the

right portion shows a disjoint subset of minimum cardi-
nality that spans the whole genome and the correspond-
ing cut locations.
Thus we are able to restrict the potential cut locations.
This helps us achieve the desired speedup and remove the
bottleneck at line 12 of the Algorithm 1 computeDCJ .

5. Results & Discussion
Based on the methodology proposed in Section 4, we ar-
rive at the following results. The A* search method de-
scribed up to Section 4.2 inclusive preforms correctly, but
has the overhead of expanding all the neighbors of a node.
Section 4.4 describes a preprocessing phase to eliminate
the overhead. But the techniques developed in the prepro-
cessing step are only applicable in case where the source
and destinations contain no duplicate genes. Otherwise
the preprocessing step may not yield the correct output.
If the source and destination genomes contain duplicate
genes the following situations may arise:

1. The segments in the source genome might overlap in
the destination genome and thus not cover the whole
destination genome.

2. A segment in the source genome can be found at mul-
tiple places in the destination genome.

3. We used minimum number of segments to imply the
cut locations which might not be the case.

Thus the existence of duplicate genes in the source or des-
tination genome can invalidate the preprocessing step. To
alleviate this problem, we can derive an order of the cut
locations and impose the neighbors to be expanded in the
given order. Thus the more probable cut locations will
be explored early and the other branches will be pruned
faster.

Page 6 of 8



F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Figure 5. Intuition behind the preprocessing step

Figure 6. Determining potential cut locations

6. Conclusions
In order to solve the problem of computing the edit
distance for two genomes with duplicate genes under
the DCJ model, at first we perform A* search to find
the destination genome from source genome. At each
step consider all possible pair of adjacencies as well as
telomeres for DCJ and expand the node with smallest
heuristic value. The heuristic must be admissible, i.e.,
it should never overestimate the cost to the goal node.
The heuristic must be tight enough to ensure better
performance. At the preprocessing step, all contiguous
segments of source and destination genome are formed.
Then, the task is to identify the segments of source
genome that are found in the destination genome as a
contiguous segment. The segments in the source genome
might overlap in the destination genome and thus not
cover the destination genome. A segment in the source
genome can be found at multiple places in the destination
genome. We have used minimum number of segments to
imply the cut locations which might not be the case.

From literature review, it is evident that all other exist-
ing solutions to the problem of finding DCJ distance be-
tween two genomes containing duplicate genes construct
an adjacency graph and find the permutation with mini-
mum number of cycles. Here, we have proposed a new
approach the problem that involves A* search along with
a tight heuristic to extend the search and also a prepro-
cessing technique to farther enhance the performance of
our solution. Our proposed solution works accurately and
much more effectively if there are no duplicate genes but
might not find the optimum result if the genomes contain
duplicate genes.

Acknowledgements
The authors would like to thank Dr. Atif Hasan Rahman
for providing fruitful suggestions and directions to com-
plete the project. As this project is part of the course CSE
6406 (Bioinformatics Algorithms) of M.Sc. in CSE, BUET,
authors would also like to acknowledge the suggestions
of the classmates during the presentation session of the
project progress .

References
[1] Sridhar Hannenhalli and Pavel A Pevzner. Transform-

ing cabbage into turnip: polynomial algorithm for sort-
ing signed permutations by reversals. Journal of the ACM
(JACM), 46(1):1–27, 1999.

[2] David A Bader, Bernard ME Moret, and Mi Yan. A linear-
time algorithm for computing inversion distance between
signed permutations with an experimental study. Journal
of Computational Biology, 8(5):483–491, 2001.

[3] Sophia Yancopoulos, Oliver Attie, and Richard Friedberg.
Efficient sorting of genomic permutations by translocation,
inversion and block interchange. Bioinformatics, 21(16):
3340–3346, 2005.

[4] Anne Bergeron, Julia Mixtacki, and Jens Stoye. A uni-
fying view of genome rearrangements. In International
Workshop on Algorithms in Bioinformatics, pages 163–173.
Springer, 2006.

[5] Jeffrey A Bailey and Evan E Eichler. Primate segmental
duplications: crucibles of evolution, diversity and disease.
Nature Reviews Genetics, 7(7):552–564, 2006.

[6] Michael Lynch and Bruce Walsh. The origins of genome
architecture, volume 98. Sinauer Associates Sunderland,
2007.

Page 7 of 8



F1000Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

[7] Zhaoshi Jiang, Haixu Tang, Mario Ventura,
Maria Francesca Cardone, Tomas Marques-Bonet, Xinwei
She, Pavel A Pevzner, and Evan E Eichler. Ancestral recon-
struction of segmental duplications reveals punctuated
cores of human genome evolution. Nature genetics, 39
(11):1361–1368, 2007.

[8] Xin Chen, Jie Zheng, Zheng Fu, Peng Nan, Yang Zhong,
Stefano Lonardi, and Tao Jiang. Assignment of or-
thologous genes via genome rearrangement. IEEE/ACM
Transactions on Computational Biology and Bioinformatics
(TCBB), 2(4):302–315, 2005.

[9] Sébastien Angibaud, Guillaume Fertin, Irena Rusu, Annel-
yse Thévenin, and Stéphane Vialette. On the approxima-
bility of comparing genomes with duplicates. Journal of
Graph Algorithms and Applications (JGAA), 13(1):19–53,
2009.

[10] Sébastien Angibaud, Guillaume Fertin, Irena Rusu, and
Stéphane Vialette. A pseudo-boolean framework for com-
puting rearrangement distances between genomes with
duplicates. Journal of Computational Biology, 14(4):379–
393, 2007.

[11] Matthew Mazowita, Lani Haque, and David Sankoff. Sta-
bility of rearrangement measures in the comparison of
genome sequences. Journal of Computational Biology, 13
(2):554–566, 2006.

[12] Anne Bergeron and Jens Stoye. On the similarity of sets of
permutations and its applications to genome comparison.
In International Computing and Combinatorics Conference,
pages 68–79. Springer, 2003.

[13] Sherwood Casjens, Nanette Palmer, René Van Vugt, Wai
Mun Huang, Brian Stevenson, Patricia Rosa, Raju Lathi-
gra, Granger Sutton, Jeremy Peterson, Robert J Dodson,
et al. A bacterial genome in flux: the twelve linear and
nine circular extrachromosomal dnas in an infectious iso-
late of the lyme disease spirochete borrelia burgdorferi.
Molecular microbiology, 35(3):490–516, 2000.

[14] Jean-Nicolas Volff and Josef Altenbuchner. A new begin-
ning with new ends: linearisation of circular chromosomes
during bacterial evolution. FEMS microbiology letters, 186
(2):143–150, 2000.

[15] Chunfang Zheng, Aleksander Lenert, and David Sankoff.
Reversal distance for partially ordered genomes. Bioinfor-
matics, 21(suppl 1):i502–i508, 2005.

[16] David Sankoff. Genome rearrangement with gene families.
Bioinformatics, 15(11):909–917, 1999.

[17] Sridhar Hannenhalli and Pavel A Pevzner. Transforming
men into mice (polynomial algorithm for genomic dis-
tance problem). In Foundations of Computer Science, 1995.
Proceedings., 36th Annual Symposium on, pages 581–592.
IEEE, 1995.

[18] Chin Lung Lu, Yen Lin Huang, Tsui Ching Wang, and
Hsien-Tai Chiu. Analysis of circular genome rearrange-
ment by fusions, fissions and block-interchanges. BMC
bioinformatics, 7(1):295, 2006.

[19] Ying Chih Lin, Chin Lung Lu, Hwan-You Chang, and
Chuan Yi Tang. An efficient algorithm for sorting by block-
interchanges and its application to the evolution of vibrio

species. Journal of Computational Biology, 12(1):102–112,
2005.

[20] Guillaume Fertin. Combinatorics of genome rearrange-
ments. MIT press, 2009.

[21] Cedric Chauve, Nadia El-Mabrouk, and Eric Tannier. Mod-
els and algorithms for genome evolution. Springer, 2013.

[22] Géraldine Jean and Macha Nikolski. Genome rearrange-
ments: a correct algorithm for optimal capping. Informa-
tion Processing Letters, 104(1):14–20, 2007.

[23] Michal Ozery-Flato and Ron Shamir. Two notes on genome
rearrangement. Journal of Bioinformatics and Computa-
tional Biology, 1(01):71–94, 2003.

[24] Glenn Tesler. Efficient algorithms for multichromosomal
genome rearrangements. Journal of Computer and System
Sciences, 65(3):587–609, 2002.

[25] Xin Chen. On sorting permutations by double-cut-and-
joins. In International Computing and Combinatorics Con-
ference, pages 439–448. Springer, 2010.

[26] Xin Chen, Ruimin Sun, and Jiadong Yu. Approximating the
double-cut-and-join distance between unsigned genomes.
BMC bioinformatics, 12(9):1, 2011.

[27] Sophia Yancopoulos and Richard Friedberg. Sorting
genomes with insertions, deletions and duplications by
dcj. In RECOMB International Workshop on Comparative
Genomics, pages 170–183. Springer, 2008.

[28] Bernard ME Moret and Tandy Warnow. Advances in phy-
logeny reconstruction from gene order and content data.
Methods in enzymology, 395:673–700, 2005.

[29] Zheng Fu, Xin Chen, Vladimir Vacic, Peng Nan, Yang
Zhong, and Tao Jiang. Msoar: a high-throughput ortholog
assignment system based on genome rearrangement. Jour-
nal of Computational Biology, 14(9):1160–1175, 2007.

[30] Guanqun Shi, Liqing Zhang, and Tao Jiang. Msoar 2.0: In-
corporating tandem duplications into ortholog assignment
based on genome rearrangement. BMC bioinformatics, 11
(1):1, 2010.

[31] Mingfu Shao, Yu Lin, and Bernard Moret. An exact algo-
rithm to compute the dcj distance for genomes with dupli-
cate genes. In International Conference on Research in Com-
putational Molecular Biology, pages 280–292. Springer,
2014.

[32] Mingfu Shao and Yu Lin. Approximating the edit distance
for genomes with duplicate genes under dcj, insertion and
deletion. BMC bioinformatics, 13(Suppl 19):S13, 2012.

[33] John Kececioglu and David Sankoff. Exact and approxima-
tion algorithms for sorting by reversals, with application to
genome rearrangement. Algorithmica, 13(1-2):180–210,
1995.

[34] Diego P Rubert, Pedro Feijão, Marília DV Braga, Jens
Stoye, and Fábio V Martinez. A linear time approximation
algorithm for the dcj distance for genomes with bounded
number of duplicates. In International Workshop on Algo-
rithms in Bioinformatics, pages 293–306. Springer, 2016.

Page 8 of 8


