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Abstract— Recently, a number of learning-based models have
been proposed for multi-robot navigation. However, these mod-
els lack memory and only rely on the current observations of
the robot to plan their actions. They are unable to leverage
past observations to plan better paths, especially in complex
environments. In this work, we propose a fully differentiable
and decentralized memory-enabled architecture for multi-robot
navigation and mapping called D2M2N. D2M2N maintains a
compact representation of the environment to remember past
observations and uses Value Iteration Network for complex
navigation. We conduct extensive experiments to show that
D2M2N significantly outperforms the state-of-the-art model in
complex mapping and navigation task.

I. INTRODUCTION

Learning-based methods have recently been demonstrated
to yield effective robot control policies for tasks such as nav-
igation [1], [2], [3], exploration [4], [5], [6], flocking [7], [8],
[9], and coverage [10], [11], [12]. These methods have shown
their capabilities to offload the online computational burden
into an offline learning procedure, which allows agents
to act effectively based on the learned knowledge. These
works provide multiple advantages over classical centralized
algorithms and other distributed algorithms including faster
planning and generalizability to unknown environments [13].

In this paper, we focus on the multi-robot navigation
problem in a structured environment. At each time-step,
each robot makes a partial observation of the surrounding
environment and chooses an action to reach its goal position.
Two robots can communicate if they are within the communi-
cation range of each other. Several learning-based planners
have been developed to solve this problem in an end-to-
end manner. Most recent architectures [13], [14] employ a
Convolutional Neural Network (CNN) to encode the robot
observations, variants of Graph Neural Networks (GNN)
to communicate messages, and a Multi-Layer Perceptron
(MLP) to select the actions. However, these architectures
only take into account the current observations, and hence
cannot leverage memory of what the team has observed in
the past. Furthermore, a simple MLP for selecting the action
is not expressive enough to solve the navigation task in a
complex occupancy map where the optimal path to the goal
is significantly longer than the straight-line distance from the
goal. Consequently these models exhibit poor performance
in the case of complex environments, e.g., a maze.

This work is supported by the National Science Foundation under Grant
No. 1943368 and ONR under grant number N00014-18-1-2829. The authors
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Fig. 1. Proposed Architecture of D2M2N takes as input local observations
and maintains a compact embedding mt

i of the map. This embedding is
updated over time using new local observations and embeddings received
from neighboring robots. The planner (VIN) module uses the decoded
embedding to select optimal actions for the robot.

To this end, we present a new architecture that: (i)
equips each robot with individual memory, which stores a
compact representation of its belief of the occupancy status
of the environment; and (ii) uses a Value Iteration Network
(VIN) [15] as the action selector module instead of an MLP.
The memory works as an input to the VIN. Consequently,
these two changes work in conjunction with each other.

Our proposed architecture (Figure 1) maintains a com-
pressed embedding for each robot, which represents the
robot’s belief about the occupancy map of the environment.
Two robots communicate their embeddings with each other
when they are within the communication range. Exchang-
ing embeddings, instead of the full map, helps reduce the
communication overhead. The embeddings get updated with
each observations made, and with each message received
from a neighboring robot. Given the occupancy grid and
the destination as input, the planner imitates the value
iteration process [16] to select an action. The memory and
planning modules can be trained end-to-end or separately in
a supervised manner, which makes the architecture differen-
tiable. We call this architecture Decentralized Differentiable
Memory-enabled Mapping and Navigation (D2M2N).

We conduct extensive experimentation to evaluate the
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performance of D2M2N and compare it with the state-of-the-
art architecture for multi-robot navigation, MAGAT, proposed
by Li et al. [14]. The empirical results show that D2M2N
outperforms MAGAT in both simple and complex maps,
resulting in 5% and 30% increase in action selection accuracy
respectively. We present results to show the effect of varying
the embedding size. We also demonstrate how our model
performs in the case of a noisy sensor model.

II. RELATED WORKS

Classical methods for navigation include sampling based
techniques, such as Rapidly Exploring Random Tree [17]
and Probabilistic Roadmap Planner [18], and graph based
algorithms, such as A* [19] and D* [20], which is a variant
of A* algorithm suitable for partially known environments.
Learning-based methods for navigation in an occupancy grid
environment mostly use Reinforcement Learning (RL), along
with a few techniques based on supervised learning. The
performance of such models is greatly enhanced when the
models leverage memory, i.e., when an implicit or explicit
representation of the occupancy grid is stored and used to
select the action to be taken.

Several memory-enabled RL based architectures have been
proposed [1], [2], [3], [4] for single robot navigation. In [1],
an explicit memory representation is used to learn how to
read/write the memory according to each observation. In [2],
[3], a memory hierarchy is stored where the levels correspond
to the occupancy grid at different resolutions. The RL based
models suffer from high training time and the complexity of
designing a custom reward function.

Value Iteration Network (VIN) [15] is a supervised
learning-based model for single-robot navigation. Given the
entire occupancy grid as input, VIN emulates the value
iteration process [16] of classical shortest path algorithms
to determine the action. Since its inception, VIN has been
used to solve different variants of the navigation problem.
For example, in [21], [22], VIN is applied to solve single-
robot navigation task with partial observability.

The above-mentioned works do not address the multi-
robot navigation scenario, and also not the case where
the robots share information when they are close to each
other. Multi-robot navigation with communication is studied
in [13], [14], but these architectures are not memory-enabled.
Here, each robot constructs an implicit representation of
the environment based on the observation and the received
messages of only the current time-step. Hu et al. [7] studies
the flocking problem in relevant context and uses Gated
Recurrent Unit (GRU) to maintain an implicit representation
of the environment over a prolonged period. All these works
employ an MLP on top of the implicit memory to select
the action. But an MLP is less powerful than a VIN as
action selector. Consequently these works suffer from poor
performance as we show in this paper.

In our proposed architecture, we use a memory mainte-
nance module which maintains an encoded representation of
the occupancy grid, which can be decoded to reconstruct the
explicit occupancy grid. We store an encoding of the grid,

instead of an uncompressed grid, to decrease communication
overhead. We use a convolutional autoencoder [23] as the
encoder-decoder module, which is a type of neural network
used for data compression. We show that an encoding that is
significantly smaller than the full map is still sufficient for
accurate map maintenance and navigation.

III. PROBLEM FORMULATION

We consider a 2D grid-world environment for multi-robot
path planning. The grid-world is represented by an X × Y
occupancy grid O. Each cell of the occupancy grid is either
free or occupied by an obstacle. Let R = {r1, r2, . . . rN} be
a set of N robots, each of which has a pair of start and goal
positions. Robot ri starts at cell si and is tasked to find an
obstacle free path to goal cell gi. Each robot can localize
itself within the grid-world, i.e., it knows which cell it is in.

Observation Model: At each time-step, each robot makes
a partial observation of the environment. An observation
is limited by a receptive field spanning Z cells in each
direction, i.e., a 2Z+1× 2Z+1 square grid centered at the
robot. However we represent an observation by an X × Y
grid where cells outside the receptive field are considered
to be free as shown in Figure 1. The observation made by
the ith robot at time-step t is denoted by oti. Our proposed
architecture works both for noise-free and noisy observation
models. We implement a noisy observation model by flipping
the occupancy status of each grid-cell within the receptive
field with a probability p. Results for a noisy observation
model is presented in Section V-C.3.

Communication Model: A pair of robots can exchange
messages with each other if the distance between them
is within the communication range c. Communication be-
tween a pair of neighboring robots happens instantly, and
is not obstructed by obstacles. We assume a disk model
for simplifying the setup, but it can be replaced by other
communication model.

Action Transition Model: The action taken by the ith

robot at time-step t is denoted by ati. An action moves a
robot to one of the eight adjacent cells. We assume that
action transitions are deterministic and do not depend on
the observations. But our proposed model can also handle a
stochastic action transition model, because VINs are capable
of learning action transition probabilities.

We model the multi-robot path planning problem as a
sequential decision making problem. At each time-step t,
each robot ri makes an observation oti using on-board
sensors, exchanges messages with other robots located within
its communication range, and takes an action ati towards gi
informed by the observation and the received messages.

Our objective is to propose a learning-based architecture
to plan minimum time paths for the robots to reach their
respective goal positions. Since the robots start off without
knowing the map, building a map and planing their paths
based on the map can be helpful. Furthermore, as the robots
exchange their maps when they are close to each other, we
store a compact representation of the map to reduce the
communication overhead between the robots.



IV. ARCHITECTURE

A. Overview

In our problem, the robots do not know the occupancy
grid O initially. They learn O by making observations
and receiving messages from other robots. A robot plans
a path to its goal based on its belief about O. Each robot
independently maintains its belief of O using an embedding.
The embedding of ri at time-step t is an H × 1 vector
denoted by mt

i. The embeddings get updated as robots
make observations and receive messages from neighbors.
Maintaining the embeddings enables the robots to retain
long-term memory, and thus, plan better paths.

At the beginning of time-step t each robot makes a partial
observation oti using on-board sensors, sends its embedding
from previous time-step mt−1

i to its neighboring robots,
and receives embeddings from its neighbors. Based on the
sensor observation and the received messages, a robot up-
dates its embedding. The update happens in two phases.
In the first phase, the robot’s embedding from the previous
time-step is combined with the current observation to form
an intermediate embedding ∗ht

i, which also has the size
(H × 1). In the second phase the messages received from
the neighboring robots are merged with the intermediate
embedding to compute the final embedding mt

i. After the
final embedding is computed, it is decoded to reconstruct
the X × Y sized belief map, which we denote by bti. bti
represents the belief of robot i about the occupancy status
of the environment at time-step t.

Given the belief map and the current and goal locations,
the VIN module is used to select the action. The VIN module
consists of a value iterator block which is executed K times
to compute the Q-values for all (state, action) pairs, and
an attention block to select the optimal action using the
Q-values. After the action is executed, mt

i is sent to the
neighboring robots at the beginning of the next time-step.

We divide the architecture into two modules: (i) Memory
Maintenance (MM) module, which maintains the embed-
dings according to the observations and messages received
from neighboring robots, and (ii) Value Iteration Network
(VIN) module which selects the action based on the belief
map. The two modules are described in details below.
Please refer to Figure 1 for a better understanding of the
architecture.

B. Memory Maintenance Module

This module takes as input the ego robot ri’s embedding
of the previous time-step mt−1

i , and incorporates the ob-
servation of the current time-step and the messages received
from the neighboring robots to form the new embedding mt

i.
Note that, the message received from a neighboring robot rj
is rj’s embedding of the previous time-step, mt−1

j .
The MM module contains three types of neural network

blocks: an encoder, a decoder, and an aggregator block. The
encoder compresses an occupancy grid of size X × Y to an
embedding vector of size H × 1. The decoder reconstructs
an embedding vector of size H × 1 to from an occupancy

grid of size X ×Y . The aggregator merges two embeddings
of size H × 1 to form another embedding of the same size.
The encoder and decoder blocks can be implemented either
as an MLP or a convolutional autoencoder. The aggregator
block is implemented as an MLP.

Now we describe the workflow of the MM module. We
represent free and occupied grid-cells by 0 and 1 respectively.
The observations oti are represented by X × Y vectors,
because although the robots make partial observations, we
set the values of the unobserved grid cells to 0 as shown
in Figure 1. The observation is passed through an encoder
to form a compressed representation ĥt

i of size H × 1. ĥt
i

is combined with the embedding from previous time-step
mt−1

i to form the intermediate embedding ∗ht
i of size H×1

using an aggregator, which we call observation aggregator.
Then the messages received from neighboring robots are
merged with the intermediate embedding one by one to form
the final embedding mt

i. This aggregator is called message
aggregator. At last, the final embedding is decompressed
using the decoder to obtain the belief map bti.

C. Value Iteration Module

This module takes as input ri’s belief map bti, the current
location (xt

i, y
t
i), and goal location (gi.x, gi.y), and selects

one out of eight actions, one per adjacent cell.
First we provide a brief overview of the value iteration

algorithm. Value iteration is a standard algorithm to solve
a Markov Decision Process (MDP) [24]. MDPs provide a
standard way to model sequential decision making problems,
including navigation. In an MDP, the value of a state
s ∈ S under policy π, denoted by V π(s), is the expected
discounted sum of rewards starting from s and taking actions
according to policy π. The Q-value of a (station, action)
pair (s, a), where s ∈ S and a ∈ A, under policy π
is the expected discounted sum of rewards taking action
a starting from s and executing policy π thereafter. An
optimal policy π∗ corresponds to an optimal value function
V ∗(s) = maxπV

π(s),∀s ∈ S. π∗ and V ∗ can be computed
using the value iteration algorithm as follows:

Vn+1(s) = maxa Qn(s, a) ∀s ∈ S (1)

Qn(s, a) = R(s, a) + λ
∑
s′

P (s′|s, a) Vn(s
′) (2)

As n approaches ∞, V converges to V ∗. Then the optimal
policy is given by π∗ = arg maxaQ∞(s, a).

In the case of our grid-world navigation problem, the states
and actions correspond to the grid-cells and movement to
neighbor cells. The reward function R provides high reward
at the goal cell, negative reward at occupied cells, and 0 else-
where. The transition model encodes deterministic movement
on the grid and does not depend on the observation.

Observe that in our problem, the value function has a local
connectivity structure, because the value of a cell depends
only on the values of the adjacent cells. Thus each iteration
of the value iteration algorithm is analogous to passing the
previous values (V ) and rewards (R) through a convolution
layer (Equation 2) and a max-pooling layer (Equation 1).



Here, each channel in the convolution layer corresponds to
the Q-value for a specific action. Executing the value iterator
block K times is equivalent to performing K iterations of
the value iteration loop. Thus the value iterator block outputs
an X × Y × A array of Q-values. Here A is the number
of actions, which equals 8. The Q-values are queried at
the current location of the robot using an attention block
to determine the action to be taken. The attention block
is implemented as a single layer of neurons followed by a
softmax layer which produces a probability distribution over
which action to take.

D. Training

We follow Centralized Training and Decentralized Execu-
tion (CTDE) approach to train and deploy D2M2N. We train
the two modules separately and in a supervised manner.
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Fig. 2. Training the encoder, decoder, and aggregator of the MM module.

In the MM module the message aggregator and the obser-
vation aggregator are functionally identical. They both take
as input two encoded belief maps and produce the encoding
of the OR of the two input belief maps. Both aggregators
perform the OR operation in the implicit embedding space
instead of the original grid space. In light of that, we train
the MM module using the setup described in Figure 2.
We generate binary maps M1 and M2 of size X × Y and
compute M = M1 OR M2. Each tuple (M1,M2,M) makes
one training sample. We train the encoder, decoder, and
aggregator by minimizing Binary Cross Entropy (BCE) loss.

To train the VIN module, we use an expert algorithm
that selects the optimal action given the occupancy grid, the
current location, and the goal location. The expert algorithm
uses Breadth First Search [25] to select the optimal action.
Using the expert algorithm we generate a training set con-
sisting of (occupancy grid, current location, goal location,
action) tuples. We use the training set to train the VIN
module in a supervised manner by minimizing the cross
entropy loss defined over the parameters of the VIN.

V. EXPERIMENTS

In this section, first we describe the experimental setup
(Section V-A). Next we provide a qualitative example to
demonstrate how our proposed model works (Section V-B).
Finally we present the empirical results in Section V-C.

A. Experimental Setup

1) Compared Algorithms: We compare our D2M2N
model with the MAGAT model proposed by Li et al. [14],
which is described in Section II. We also compare our
work with an Oracle solution, ORACLE. ORACLE does
not compress the belief maps before observation processing
and message passing. Hence, ORACLE does not incur any
error during observation and message aggregation. However,
ORACLE requires sharing the full belief maps which is
significantly larger than the compact embeddings shared by
D2M2N and MAGAT. ORACLE uses the true belief map to
compute the optimal path using Breadth First Search [25].
ORACLE deals with partial observability by assuming that
the unobserved grid-cells are free.

2) Evaluation Metric: We evaluate the performance of
D2M2N by using two evaluation metrics: (i) Action Selection
Accuracy (ASA), and (ii) Success weighted by inverse Path
Length (SPL). ASA gives the percentage of time-steps a
correct action is selected by a model. If there are multiple
correct actions, selecting any one of them suffices. On the
other hand, SPL [26] evaluates the performance of a model
at the path level. If a robot is able to reach the goal cell
within thrice the optimal number of time-steps, we define it
as success. Similar definition of episodic success was used
by Li et al. in [13], [14]. If a robot moves to an occluded
cell or goes into a cyclic deadlock, it fails to succeed. Given
this definition of success, SPL compares the length of a
robot’s path with the shortest path and weighs this ratio by
the success rate. Formally, given T paths,

SPL =
1

T

T∑
i=i

Si
Li

max(Pi, Li)

Here, Si is 1 if the robot is successful in the ith path, and
0 otherwise. Pi is the length of the robot’s path, and Li is
the length of the shortest path. SPL scores range from 0 to
1, where a score of 1 represents an optimal agent.

3) Dataset: We use two datasets to evaluate the perfor-
mance of our proposed architecture, namely SIMPLE and
COMPLEX dataset. In the SIMPLE dataset, the environment
contains tetris block shaped obstacles, and the (source, goal)
pairs are chosen such that the distance between each pair is
less than 1.5 times their unobstructed Manhattan distance.
The SIMPLE dataset is similar to the dataset used by Li et
al. in [13], [14]. However, in their dataset, the percentage of
grid-cells that are occluded is 10%, whereas in our SIMPLE
dataset, roughly 20% of the grid is occluded. In the case
of COMPLEX dataset, we generate random floorplan-like
occupancy grids and the distance between each (source, goal)
pair is at least twice their unobstructed Manhattan distance.
The percentages of occupied grid cells in COMPLEX dataset
is roughly 35%. Please refer to Figure 4 to see samples of
both datasets. The dataset size varies from 300K to 1.5M
depending on the environment size with a 5:1 train-test split.

4) Platform: The experiments are performed using a Core
i9-12900H processor and an Nvidia GeForce RTX 3070 Ti
GPU with 16GB RAM running Windows 11.



Environment
Size

SIMPLE Dataset COMPLEX Dataset
D2M2N MAGAT D2M2N MAGAT

ASA (%) SPL ASA (%) SPL ASA (%) SPL ASA (%) SPL

12x12 97 0.97 94 0.85 96 0.96 73 0.18
16x16 96 0.92 90 0.71 93 0.83 71 0.16
20x20 93 0.83 88 0.67 91 0.73 67 0.11
24x24 91 0.74 86 0.64 82 0.57 61 0.05

TABLE I
PERFORMANCE OF THE VIN MODULE IN SINGLE ROBOT NAVIGATION TASK UNDER FULL OBSERVABILITY

(a) Ground Truth Map (b) Correct Belief Map 
of r  at t = 7

r1

r1

r2

r1

r1

1
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(c) Correct Belief Map 
of r  at t = 81

(e) b8
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Created by VIN Module 
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Fig. 3. (a) shows the occupancy grid. Robot 1 is marked as r1, and g1
is the goal location of r1. (b) and (c) show the correct belief map of r1
after 7 and 8 time-steps respectively. This would be the case if no error was
incurred during observation and message aggregation. (d) shows the actual
belief map of r1 after 7 time-steps. False-positives and false-negatives are
marked using red and green boundaries respectively. During the 8th time-
step, r1 receives a message from r2, which is the encoded version of r2’s
belief map after 7 time-steps as shown in (f). After making an observation
and receiving a message from r2, r1’s actual belief map after time-step 8
is shown in (e). The VIN module takes b81 and the goal location (marked
by green square) as input to compute the value map as shown in (g), which
is used to select the correct action for r1. In (g), for each cell, we show
the softmax probability of the action with the maximum Q-value, which is
a measure of the model’s confidence about an action. Here red and blue
correspond to high and low confidence respectively. Observe that grid-cells
located close to the goal cell has high confidence and vice versa.

B. A Qualitative Example

In this section, we demonstrate how D2M2N works with an
illustrative example shown in Figure 3. The example shows
how robot r1’s belief map after 7 time-steps gets updated as
it receives a message from robot r2 during the 8th time-step.
In this example, the receptive field of r1 is 7× 7. Note that,
the belief map of robot ri after time-step t is denoted by bti.

C. Empirical Results

First we report the performance of the two modules inde-
pendently (Section V-C.1). Then we cascade the two modules

Fig. 4. Instances from SIMPLE (left) and COMPLEX (right) datasets. Green
and red blocks represent source and goal cells respectively.

to solve the multi-robot navigation task and present the
results in Section V-C.2. Finally we report the performance
of D2M2N for a noisy sensor model (Section V-C.3) and for
a navigation task with multiple goals (Section V-C.4).

1) Performance of Individual Modules: First we present
the performance of the MM module for the setup described
in Figure 2. As dataset, we use random subsets or windows
from the COMPLEX dataset. In this experiment, we vary the
environment size and the size of the embedding, H , and
report the percentage of correctly reconstructed grid cells
in Table II. The results show that our MM module has
reconstruction accuracy of more than 90% when a 24 × 24
map is compressed to a 16 × 1 vector, which gives a
compression ratio is 36. The results show expected behavior
as reconstruction accuracy decreases if the environment size
is increased or the value of H is lowered, and vice versa.

Now we present the performance of the VIN module
in single robot navigation task under full observability.
We compare our architecture with MAGAT [14] using both
SIMPLE and COMPLEX datasets of size 12× 12 to 24× 24
and report the ASA and SPL values in Table I. The results
show that D2M2N outperforms MAGAT for both datasets, but
the margin of difference is significantly higher in the case of
COMPLEX datasets. For example, the SPL value of D2M2N
is at least 5 times higher than MAGAT for COMPLEX dataset.
This corroborates the fact that VIN is better at solving
navigation task in complex environments than existing MLP
based models, justifying our choice for using VIN as the
planner. Next, we will evaluate how well the MM module
works in conjunction with VIN.

2) Performance in Multi-Robot Navigation Task: We cas-
cade the MM and VIN modules to solve the multi-robot navi-
gation task under partial observability. We incorporate partial
observability by shrinking the receptive field of the robots.
As a result, a robot cannot observe the entire occupancy
grid, instead it observes a square shaped region centered at
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Fig. 5. Effect of varying the number of robots (left), communication range (middle), and the size of the receptive field (right).

Environment Size H=16 H=32 H=64 H=128

12x12 97.8 99.2 99.8 99.9
16x16 96.9 98.8 99.6 99.9
20x20 93.3 97.7 99.2 99.8
24x24 90.1 95.8 98.4 99.4

TABLE II
PERFORMANCE OF THE MM MODULE

its location (see Figure 1). In all the experiments of this
section, we use a 16 × 16 environment and an embedding
of size H = 32. We vary the number of robots from 1
to 6, the communication range of the robots from 4 to 14
(Manhattan distance), and the size of the receptive field from
5×5 to 15×15. The default values of the number of robots,
communication range, and receptive field size are 4, 8, and
7×7, respectively. We use the same value for the parameters
in subsequent experiments, unless mentioned otherwise.

We compare D2M2N with MAGAT and ORACLE using
COMPLEX dataset and report the SPL values in Figure 5. The
results show that the SPL value of D2M2N is at least 5 times
higher than MAGAT. D2M2N performs better than MAGAT
because it stores memory of past observations which MAGAT
does not, and uses a VIN to select actions instead of an MLP.
On the other hand, the SPL value of ORACLE is roughly 0.2
higher than D2M2N. ORACLE outperforms D2M2N because
it uses the full map as messages while D2M2N shares
compressed embeddings, and ORACLE uses an optimal path-
planning algorithm while D2M2N uses a VIN. The perfor-
mance of our model improves as the number of robots, com-
munication range, or receptive field size increases. Because if
the number of robots or the communication range increases,
inter-robot message passing increases, which helps the robots
learn about unknown regions in the environment. Increasing
the receptive field widens observability, and hence leads to
better performance.

3) Noisy Sensor Model: In the above experiments, we
assume that each robot correctly captures the occupancy
status of the environment within it’s receptive field. In this
experiment, we relax this assumption and evaluate how our
model performs in the case of a noisy sensor model. To
simulate a noisy sensor model, in each observation oti, we
randomly flip the status (free or occupied) of grid cells
inside the receptive field with a probability p. We vary p

Noise (p) D2M2N (SPL) MAGAT (SPL)

0 0.66 0.13
0.005 0.63 0.13
0.01 0.59 0.12
0.02 0.53 0.11
0.05 0.42 0.10

TABLE III
PERFORMANCE FOR A NOISY SENSOR MODEL.

Goal Index D2M2N (SPL) MAGAT (SPL)

1 0.60 0.13
2 0.66 0.13
3 0.70 0.13
4 0.74 0.13
5 0.78 0.13

TABLE IV
PERFORMANCE FOR MULTIPLE GOALS

from 0 (which corresponds to no noise) to 0.05. The results
(Table III) show that even with 5% noise, D2M2N performs
four times better than MAGAT under the SPL metric.

4) Multi-Goal Navigation: In the final experiment, we
provide each robot with multiple goals, instead of one goal.
The task is to reach the first goal, then go the second goal,
and so on. The results in Table IV show that performance
improves as the goal index increases. This is because as a
robot spends more time navigating the environment, it learns
more about the occupancy status, hence becomes able to plan
better paths later compared to the initial phase. Note from
Table I that the SPL value of D2M2N for full observability in
16× 16 environment is 0.83. Thus the SPL value of D2M2N
approaches 0.83 as the index of the goal increases.

VI. CONCLUSIONS

In this work, we have proposed D2M2N, a decentralized
and differential model for multi-robot mapping and naviga-
tion, which, unlike previous works, includes a memory unit
to remember past observations and uses a VIN, instead of an
MLP, for action selection. We have conducted experiments
to show that D2M2N significantly outperforms the state-of-
the-art [14] in complex navigation task. In future, we intend
to extend D2M2N to handle inter-robot collision and perform
experiments on larger realistic environments.



REFERENCES

[1] E. Parisotto and R. Salakhutdinov, “Neural map: Structured memory
for deep reinforcement learning,” arXiv preprint arXiv:1702.08360,
2017.

[2] Z. Ravichandran, L. Peng, N. Hughes, J. D. Griffith, and L. Carlone,
“Hierarchical representations and explicit memory: Learning effective
navigation policies on 3d scene graphs using graph neural networks,”
in 2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 9272–9279.

[3] A. Francis, A. Faust, H.-T. L. Chiang, J. Hsu, J. C. Kew, M. Fiser,
and T.-W. E. Lee, “Long-range indoor navigation with prm-rl,” IEEE
Transactions on Robotics, vol. 36, no. 4, pp. 1115–1134, 2020.

[4] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, et al., “Learning to
navigate in complex environments,” arXiv preprint arXiv:1611.03673,
2016.

[5] F. Chen, J. D. Martin, Y. Huang, J. Wang, and B. Englot, “Autonomous
exploration under uncertainty via deep reinforcement learning on
graphs,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 6140–6147.

[6] G. Shi, I.E. Rabban, L. Zhou, P. Tokekar, “Communication-aware
multi-robot coordination with submodular maximization”, 2021 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 8955-8961). 2021.

[7] T. Hu, F. Gama, T. Chen, W. Zheng, Z. Wang, A. Ribeiro, and
B. M. Sadler, “Scalable perception-action-communication loops with
convolutional and graph neural networks,” IEEE Transactions on
Signal and Information Processing over Networks, vol. 8, pp. 12–24,
2022.

[8] E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro,
“Learning decentralized controllers for robot swarms with graph neural
networks,” in Conference on robot learning. PMLR, 2020, pp. 671–
682.

[9] F. Schilling, J. Lecoeur, F. Schiano, and D. Floreano, “Learning
vision-based flight in drone swarms by imitation,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 4523–4530, 2019.

[10] E. Tolstaya, J. Paulos, V. Kumar, and A. Ribeiro, “Multi-robot cov-
erage and exploration using spatial graph neural networks,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2021, pp. 8944–8950.

[11] M. Ishat-E-Rabban, P. Tokekar, “Failure-resilient coverage maximiza-
tion with multiple robots”, IEEE Robotics and Automation Letters,
vol. 6(2), pp. 3894-3901, 2021.

[12] M. Rabban, M. Ali, M. Cheema, T. Hashem, “The Maximum Visibility
Facility Selection Query in Spatial Databases”, 27th ACM Sigspatial
International Conference on Advances in Geographic Information
Systems, pp. 149–158, 2019.

[13] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for
decentralized multi-robot path planning,” 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 11 785–
11 792, 2020.

[14] Q. Li, W. Lin, Z. Lin, and A. Prorok, “Message-aware graph attention
networks for large-scale multi-robot path planning,” IEEE Robotics
and Automation Letters, vol. 6, no. 3, pp. 5533–5540, 2021.

[15] A. Tamar, Y. WU, G. Thomas, S. Levine, and P. Abbeel, “Value
iteration networks,” in Advances in Neural Information Processing
Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,
Eds., vol. 29. Curran Associates, Inc., 2016.

[16] R. Bellman, Dynamic Programming. Princeton, NJ: Princeton
University Press, 1957.

[17] S. M. LaValle, “Rapidly-exploring random trees : a new tool for path
planning,” The annual research report, 1998.

[18] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[19] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[20] A. Stentz, “Optimal and efficient path planning for partially known
environments,” in Intelligent unmanned ground vehicles. Springer,
1997, pp. 203–220.

[21] A. Khan, C. Zhang, N. Atanasov, K. Karydis, V. Kumar, and
D. D. Lee, “Memory augmented control networks,” arXiv preprint
arXiv:1709.05706, 2017.

[22] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cog-
nitive mapping and planning for visual navigation,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2017, pp. 2616–2625.

[23] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked
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